17,921 research outputs found
Spin-Current Relaxation Time in Spin-Polarized Heisenberg Paramagnets
We study the spatial Fourier transform of the spin correlation function
G_q(t) in paramagnetic quantum crystals by direct simulation of a 1d lattice of
atoms interacting via a nearest-neighbor Heisenberg exchange Hamiltonian. Since
it is not practical to diagonalize the s=1/2 exchange Hamiltonian for a lattice
which is of sufficient size to study long-wavelength (hydrodynamic)
fluctuations, we instead study the s -> infinity limit and treat each spin as a
vector with a classical equation of motion. The simulations give a detailed
picture of the correlation function G_q(t) and its time derivatives. At high
polarization, there seems to be a hierarchy of frequency scales: the local
exchange frequency, a wavelength-independent relaxation rate 1/tau that
vanishes at large polarization P ->1, and a wavelength-dependent spin-wave
frequency proportional to q^2. This suggests a form for the correlation
function which modifies the spin diffusion coefficients obtained in a moments
calculation by Cowan and Mullin, who used a standard Gaussian ansatz for the
second derivative of the correlation function.Comment: 6 pages, 3 figure
Relativistic many-body calculations of the Stark-induced amplitude of the 6P1/2 -7P1/2 transition in thallium
Stark-induced amplitudes for the 6P1/2 - 7P1/2 transition in Tl I are
calculated using the relativistic SD approximation in which single and double
excitations of Dirac-Hartree-Fock levels are summed to all orders in
perturbation theory. Our SD values alpha S = 368 a0 3 and beta S= 298 a 0 3 are
in good agreement with the measurements alpha S=377(8) a 0 3$ and beta S =
313(8) a 0 3 by D. DeMille, D. Budker, and E. D. Commins [Phys. Rev. A 50, 4657
(1994)]. Calculations of the Stark shifts in the 6P1/2 - 7P1/2 and 6P1/2 -
7S1/2 transitions are also carried out. The Stark shifts predicted by our
calculations agree with the most accurate measured values within the
experimental uncertainties for both transitions
The Radio Recovery of SN 1970G: The Continuing Radio Evolution of SN 1970G
Using the Very Large Array, we have detected radio emission from the site of
SN 1970G in the Sc galaxy M101. These observations are 31 years after the
supernova event, making SN 1970G the longest monitored radio supernova. With
flux densities of 0.12 +/- 0.020 mJy at 6 cm and 0.16 +/- 0.015 mJy at 20 cm,
the spectral index of -0.24 +/- 0.20 appears to have flattened somewhat when
compared with the previously reported value of -0.56 +/- 0.11, taken in 1990.
The radio emission at 20 cm has decayed since the 1990 observations with a
power-law index of beta_20cm = -0.28 +/- 0.13. We discuss the radio properties
of this source and compare them to those of other Type II radio supernovae.Comment: 11 pages, 1 table and 2 figures; To appear in Astrophysical Journal
Letter
Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag
We report a theoretical study on resonant x-ray emission spectra (RXES) in
the whole energy region of the Mn white lines for three prototypical
Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on
Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on
the excitation energy. At excitation, the spectra of all three systems
are dominated by the elastic peak. For excitation energies around , and
between and , however, most of the spectral weight comes from
inelastic x-ray scattering. The line shape of these inelastic ``satellite''
structures changes considerably between the three considered Mn/Ag systems, a
fact that may be attributed to changes in the bonding nature of the Mn-
orbitals. The system-dependence of the RXES spectrum is thus found to be much
stronger than that of the corresponding absorption spectrum. Our results
suggest that RXES in the Mn region may be used as a sensitive probe
of the local environment of Mn atoms.Comment: 9 pages, 11 figure
Judith Cowan: the capacity of things: Artist's inserts and interviews.
The book consists of three different interpretations of her work (by the two editors and Stella Santacatterina); interviews with Richard Wentworth and Susan Butler and image/texts by Judith Cowan
Supernovae versus Neutron Star Mergers as the Major r-Process Sources
I show that recent observations of r-process abundances in metal-poor stars
are difficult to explain if neutron star mergers (NSMs) are the major r-process
sources. In contrast, such observations and meteoritic data on Hf182 and I129
in the early solar system support a self-consistent picture of r-process
enrichment by supernovae (SNe). While further theoretical studies of r-process
production and enrichment are needed for both SNe and NSMs, I emphasize two
possible direct observational tests of the SN r-process model: gamma rays from
decay of r-process nuclei in SN remnants and surface contamination of the
companion by SN r-process ejecta in binaries.Comment: 5 pages, to appear in ApJ
Metal-ligand interplay in strongly-correlated oxides: a parametrized phase diagram for pressure induced spin transitions
We investigate the magnetic properties of archetypal transition-metal oxides
MnO, FeO, CoO and NiO under very high pressure by x-ray emission spectroscopy
at the K\beta line. We observe a strong modification of the magnetism in the
megabar range in all the samples except NiO. The results are analyzed within a
multiplet approach including charge-transfer effects. The pressure dependence
of the emission line is well accounted for by changes of the ligand field
acting on the d electrons and allows us to extract parameters like local
d-hybridization strength, O-2p bandwidth and ionic crystal field across the
magnetic transition. This approach allows a first-hand insight into the
mechanism of the pressure induced spin transition.Comment: 5 pages, 3 figure
- …