124 research outputs found
OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars
We have used the STACEE high-energy gamma-ray detector to look for fast
blue-green laser pulses from the vicinity of 187 stars. The STACEE detector
offers unprecedented light-collecting capability for the detection of
nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be
approximately 10 photons per square meter at a wavelength of 420 nm. The stars
have been chosen because their characteristics are such that they may harbor
habitable planets and they are relatively close to Earth. Each star was
observed for 10 minutes and we found no evidence for laser pulses in any of the
data sets.Comment: 38 pages, 12 figures. Accepted for publication in Astrobiolog
Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors
The gamma-ray energy region between 20 and 250 GeV is largely unexplored.
Ground-based atmospheric Cherenkov detectors offer a possible way to explore
this region, but large Cherenkov photon collection areas are needed to achieve
low energy thresholds. This paper discusses the development of a Cherenkov
detector using the heliostat mirrors of a solar power plant as the primary
collector. As part of this development, we built a prototype detector
consisting of four heliostat mirrors and used it to record atmospheric
Cherenkov radiation produced in extensive air showers created by cosmic ray
particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published
in Astroparticle Physic
The STACEE-32 Ground Based Gamma-ray Detector
We describe the design and performance of the Solar Tower Atmospheric
Cherenkov Effect Experiment detector in its initial configuration (STACEE-32).
STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov
technique. In STACEE, the heliostats of a solar energy research array are used
to collect and focus the Cherenkov photons produced in gamma-ray induced air
showers. The large Cherenkov photon collection area of STACEE results in a
gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments
and Methods
Very high energy observations of the BL Lac objects 3C 66A and OJ 287
Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we
have observed the BL Lac objects 3C 66A and OJ 287. These are members of the
class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three
LBLs predicted by Costamante and Ghisellini to be potential sources of very
high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae,
has recently been detected by the MAGIC collaboration. Our observations have
not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A
of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits
assume a Crab-like energy spectrum with an effective energy threshold of 185
GeV.Comment: 24 pages, 15 figures, Accepted for publication in Astroparticle
Physic
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
- âŠ