1,367 research outputs found
Robust snubberless soft-switching power converter using SiC power MOSFETs and bespoke thermal design
A number of harsh-environment high-reliability applications are undergoing substantial electrification. The converters operating in such systems need to be designed to meet both stringent performance and reliability requirements. Semiconductor devices are central elements of power converters and key enablers of performance and reliability. This paper focuses on a DC–DC converter for novel avionic applications and considers both new semiconductor technologies and the application of design techniques to ensure, at the same time, that robustness is maximized and stress levels minimized. In this respect close attention is paid to the thermal management and an approach for the heatsink design aided by finite element modelling is shown
Why compatibilist intuitions are not mistaken: a reply to Feltz and Millan
In the past decade, a number of empirical researchers have suggested that laypeople have compatibilist intuitions. In a recent paper, Feltz and Millan (2015) have challenged this conclusion by claiming that most laypeople are only compatibilists in appearance and are in fact willing to attribute free will to people no matter what. As evidence for this claim, they have shown that an important proportion of laypeople still attribute free will to agents in fatalistic universes. In this paper, we first argue that Feltz and Millan’s error-theory rests on a conceptual confusion: it is perfectly acceptable for a certain brand of compatibilist to judge free will and fatalism to be compatible, as long as fatalism does not prevent agents from being the source of their actions. We then present the results of two studies showing that laypeople’s intuitions are best understood as following a certain brand of source compatibilism rather than a “free-will-no-matter-what” strategy
Hexagonal Structure of Baby Skyrmion Lattices
We study the zero-temperature crystalline structure of baby Skyrmions by
applying a full-field numerical minimization algorithm to baby Skyrmions placed
inside different parallelogramic unit-cells and imposing periodic boundary
conditions. We find that within this setup, the minimal energy is obtained for
the hexagonal lattice, and that in the resulting configuration the Skyrmion
splits into quarter-Skyrmions. In particular, we find that the energy in the
hexagonal case is lower than the one obtained on the well-studied rectangular
lattice, in which splitting into half-Skyrmions is observed.Comment: RevTeX, 7 pages, 6 figure
Imaging review of the lung parenchymal complications in patients with IPF
Idiopathic pulmonary fibrosis (IPF) is a chronic, pulmonary-limited, interstitial lung disease with a poor prognosis. This condition is characterized by different clinical scenarios, ranging from the most typical slow and progressive deterioration of symptoms to a rapid and abrupt decline of lung function. Rapid worsening of clinical course is due to superimposed complications and comorbidities that can develop in IPF patients, with a higher incidence rate compared to the general population. These conditions may require a different management of the patient and a therapy adjustment, and thus it is fundamental to recognize them. High Resolution Computed Tomography (HRCT) is sensitive, but not specific, in detecting these complications, and can evaluate the presence of radiological variations when previous examinations are available; it recognizes ground glass opacities or consolidation that can be related to a large spectrum of comorbidities, such as infection, lung cancer, or acute exacerbation. To reach the final diagnosis, a multidisciplinary discussion is required, particularly when the clinical context is related to imaging findings
Modeling Soft Supramolecular Nanostructures by Molecular Simulations
The design and assembly of soft supramolecular structures based on small building blocks are governed by non-covalent interactions, selective host-guest interactions, or a combination of different interaction types. There is a surprising number of studies supporting the use of computational models for mimicking supramolecular nanosystems and studying the underlying patterns of molecular recognition and binding, in multi-dimensional approaches. Based on physical properties and mathematical concepts, these models are able to provide rationales for the conformation, solvation and thermodynamic characterization of this type of systems. Molecular dynamics (MD), including free-energy calculations, yield a direct coupling between experimental and computational investigation. This chapter provides an overview of the available MD-based methods, including path-based and alchemical free-energy calculations. The theoretical background is briefly reviewed and practical instructions are introduced on the selection of methods and post-treatment procedures. Relevant examples in which non-covalent interactions dominate are presented
How to squeeze high quantum efficiency and high time resolution out of a SPAD
We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms
Role of Multiparametric-MRI in Bladder Cancer
Purpose of ReviewThis narrative review article aims to show the actual role of imaging, in particular MRI, and the role of VI-RADS Score, in recognition and follow-up of the tumor.Recent FindingsA team of professionals created VI-RADS with the goal of standardizing the acquisition and interpretation of multiparametric-MRI in bladder cancer.Bladder cancer is the most common cancer involving the urinary system. It is the fourth most common urological cancer in men and the second most frequent cancer affecting the urinary tract. Main risks factors are advanced age, male sex, and cigarette smoking. Bladder cancer ranges from unaggressive and usually non-invasive tumors that recur and commit patients to long-term invasive surveillance, to aggressive and invasive tumors with high disease-specific mortality. At the time of diagnosis, 70% of patients are experiencing non-muscle-invasive bladder cancer. Vesical imaging-reporting and data system score (VI-RADS) is a scoring system useful to standardize the approach to multiparametric-MRI interpretation, and reporting for bladder cancer
- …