97 research outputs found
Invariance of Structure in an Aging Colloidal Glass
We study concentrated colloidal suspensions, a model system which has a glass
transition. The non-equilibrium nature of the glassy state is most clearly
highlighted by aging -- the dependence of the system's properties on the time
elapsed since vitrification. Fast laser scanning confocal microscopy allows us
to image a colloidal glass and track the particles in three dimensions. We
analyze the static structure in terms of tetrahedral packing. We find that
while the aging of the suspension clearly affects its dynamics, none of the
geometrical quantities associated with tetrahedra change with age.Comment: Submitted to the proceedings of "The 3rd International Workshop on
Complex Systems" in Sendai, Japa
Self-Organized Criticality Below The Glass Transition
We obtain evidence that the dynamics of glassy systems below the glass
transition is characterized by self-organized criticality. Using molecular
dynamics simulations of a model glass-former we identify clusters of
cooperatively jumping particles. We find string-like clusters whose size is
power-law distributed not only close to T_c but for ALL temperatures below T_c,
indicating self-organized criticality which we interpret as a freezing in of
critical behavior.Comment: 4 pages, 3 figure
Forced motion of a probe particle near the colloidal glass transition
We use confocal microscopy to study the motion of a magnetic bead in a dense
colloidal suspension, near the colloidal glass transition volume fraction
. For dense liquid-like samples near , below a threshold force
the magnetic bead exhibits only localized caged motion. Above this force, the
bead is pulled with a fluctuating velocity. The relationship between force and
velocity becomes increasingly nonlinear as is approached. The
threshold force and nonlinear drag force vary strongly with the volume
fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in
Europhysics Letter
Correlations of Structure and Dynamics in an Aging Colloidal Glass
We study concentrated colloidal suspensions, a model system which has a glass
transition. Samples in the glassy state show aging, in that the motion of the
colloidal particles slows as the sample ages from an initial state. We study
the relationship between the static structure and the slowing dynamics, using
confocal microscopy to follow the three-dimensional motion of the particles.
The structure is quantified by considering tetrahedra formed by quadruplets of
neighboring particles. We find that while the sample clearly slows down during
aging, the static properties as measured by tetrahedral quantities do not vary.
However, a weak correlation between tetrahedron shape and mobility is observed,
suggesting that the structure facilitates the motion responsible for the sample
aging.Comment: Submitted to Solid State Communication
Time reparametrization invariance in arbitrary range p-spin models: symmetric versus non-symmetric dynamics
We explore the existence of time reparametrization symmetry in p-spin models.
Using the Martin-Siggia-Rose generating functional, we analytically probe the
long-time dynamics. We perform a renormalization group analysis where we
systematically integrate over short timescale fluctuations. We find three
families of stable fixed points and study the symmetry of those fixed points
with respect to time reparametrizations. One of those families is composed
entirely of symmetric fixed points, which are associated with the low
temperature dynamics. The other two families are composed entirely of
non-symmetric fixed points. One of these two non-symmetric families corresponds
to the high temperature dynamics.
Time reparametrization symmetry is a continuous symmetry that is
spontaneously broken in the glass state and we argue that this gives rise to
the presence of Goldstone modes. We expect the Goldstone modes to determine the
properties of fluctuations in the glass state, in particular predicting the
presence of dynamical heterogeneity.Comment: v2: Extensively modified to discuss both high temperature
(non-symmetric) and low temperature (symmetric) renormalization group fixed
points. Now 16 pages with 1 figure. v1: 13 page
Aging in Dense Colloids as Diffusion in the Logarithm of Time
The far-from-equilibrium dynamics of glassy systems share important
phenomenological traits. A transition is generally observed from a
time-homogeneous dynamical regime to an aging regime where physical changes
occur intermittently and, on average, at a decreasing rate. It has been
suggested that a global change of the independent time variable to its
logarithm may render the aging dynamics homogeneous: for colloids, this entails
diffusion but on a logarithmic time scale. Our novel analysis of experimental
colloid data confirms that the mean square displacement grows linearly in time
at low densities and shows that it grows linearly in the logarithm of time at
high densities. Correspondingly, pairs of particles initially in close contact
survive as pairs with a probability which decays exponentially in either time
or its logarithm. The form of the Probability Density Function of the
displacements shows that long-ranged spatial correlations are very long-lived
in dense colloids. A phenomenological stochastic model is then introduced which
relies on the growth and collapse of strongly correlated clusters ("dynamic
heterogeneity"), and which reproduces the full spectrum of observed colloidal
behaviors depending on the form assumed for the probability that a cluster
collapses during a Monte Carlo update. In the limit where large clusters
dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian
process that qualitatively reproduces the experimental results for dense
colloids. Finally an analytical toy-model is discussed to elucidate the strong
dependence of the simulation results on the integrability (or lack thereof) of
the cluster collapse probability function.Comment: 6 pages, extensively revised, final version; for related work, see
http://www.physics.emory.edu/faculty/boettcher/ or
http://www.fysik.sdu.dk/staff/staff-vip/pas-personal.htm
Direct visualization of aging in colloidal glasses
We use confocal microscopy to directly visualize the dynamics of aging
colloidal glasses. We prepare a colloidal suspension at high density, a simple
model system which shares many properties with other glasses, and initiate
experiments by stirring the sample. We follow the motion of several thousand
colloidal particles after the stirring and observe that their motion
significantly slows as the sample ages. The aging is both spatially and
temporally heterogeneous. Furthermore, while the characteristic relaxation time
scale grows with the age of the sample, nontrivial particle motions continue to
occur on all time scales.Comment: submitted to proceedings for Liquid Matter Conference 200
Particle dynamics in colloidal suspensions above and below the glass-liquid re-entrance transition
We study colloidal particle dynamics of a model glass system using confocal
and fluorescence microscopy as the sample evolves from a hard-sphere glass to a
liquid with attractive interparticle interactions. The transition from
hard-sphere glass to attractive liquid is induced by short-range depletion
forces. The development of liquid-like structure is indicated by particle
dynamics. We identify particles which exhibit substantial motional events and
characterize the transition using the properties of these motional events. As
samples enter the attractive liquid region, particle speed during these
motional events increases by about one order of magnitude, and the particles
move more cooperatively. Interestingly, colloidal particles in the attractive
liquid phase do not exhibit significantly larger displacements than particles
in the hard-sphere glass
Atomistic mechanism of physical ageing in glassy materials
Using molecular simulations, we identify microscopic relaxation events of
individual particles in ageing structural glasses, and determine the full
distribution of relaxation times. We find that the memory of the waiting time
elapsed since the quench extends only up to the first relaxation event,
while the distribution of all subsequent relaxation times (persistence times)
follows a power law completely independent of history. Our results are in
remarkable agreement with the well known phenomenological trap model of ageing.
A continuous time random walk (CTRW) parametrized with the atomistic
distributions captures the entire bulk diffusion behavior and explains the
apparent scaling of the relaxation dynamics with during ageing, as well
as observed deviations from perfect scaling.Comment: 5 pages, 5 figure
Growing dynamical length, scaling and heterogeneities in the 3d Edwards-Anderson model
We study numerically spatio-temporal fluctuations during the
out-of-equilibrium relaxation of the three-dimensional Edwards-Anderson model.
We focus on two issues. (1) The evolution of a growing dynamical length scale
in the glassy phase of the model, and the consequent collapse of the
distribution of local coarse-grained correlations measured at different pairs
of times on a single function using {\it two} scaling parameters, the value of
the global correlation at the measuring times and the ratio of the coarse
graining length to the dynamical length scale (in the thermodynamic limit). (2)
The `triangular' relation between coarse-grained local correlations at three
pairs of times taken from the ordered instants .
Property (1) is consistent with the conjecture that the development of
time-reparametrization invariance asymptotically is responsible for the main
dynamic fluctuations in aging glassy systems as well as with other mechanisms
proposed in the literature. Property (2), we stress, is a much stronger test of
the relevance of the time-reparametrization invariance scenario.Comment: 24 pages, 12 fig
- …