346 research outputs found
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Precision is in the Eye of the Beholder: Application of Eye Fixation-Related Potentials to Information Systems Research
This is the final version. Available from Association for Information Systems via the DOI in this recordThis paper introduces the eye-fixation related potential (EFRP) method to IS research. The EFRP method allows one to synchronize eye tracking with electroencephalographic (EEG) recording to precisely capture users’ neural activity at the exact time at which they start to cognitively process a stimulus (e.g., event on the screen). This complements and overcomes some of the shortcomings of the traditional event related potential (ERP) method, which can only stamp the time at which a stimulus is presented to a user. Thus, we propose a method conjecture of the superiority of EFRP over ERP for capturing the cognitive processing of a stimulus when such cognitive processing is not necessarily synchronized with the time at which the stimulus appears. We illustrate the EFRP method with an experiment in a natural IS use context in which we asked users to read an industry report while email pop-up notifications arrived on their screen. The results support our proposed hypotheses and show three distinct neural processes associated with 1) the attentional reaction to email pop-up notification, 2) the cognitive processing of the email pop-up notification, and 3) the motor planning activity involved in opening or not the email. Furthermore, further analyses of the data gathered in the experiment serve to validate our method conjecture about the superiority of the EFRP method over the ERP in natural IS use contexts. In addition to the experiment, our study discusses important IS research questions that could be pursued with the aid of EFRP, and describes a set of guidelines to help IS researchers use this method.Social Sciences and Humanities Research Council of Canada (SSHRC)Natural Sciences and Engineering Research Council of CanadaFonds Québécois pour la Recherche sur la Société et la Culture (FQRSC)Fonds de recherche Nature et Technologies (FQRNT
Points, Walls and Loops in Resonant Oscillatory Media
In an experiment of oscillatory media, domains and walls are formed under the
parametric resonance with a frequency double the natural one. In this bi-stable
system, %phase jumps by crossing walls. a nonequilibrium transition from
Ising wall to Bloch wall consistent with prediction is confirmed
experimentally. The Bloch wall moves in the direction determined by its
chirality with a constant speed. As a new type of moving structure in
two-dimension, a traveling loop consisting of two walls and Neel points is
observed.Comment: 9 pages (revtex format) and 6 figures (PostScript
Dynamic Front Transitions and Spiral-Vortex Nucleation
This is a study of front dynamics in reaction diffusion systems near
Nonequilibrium Ising-Bloch bifurcations. We find that the relation between
front velocity and perturbative factors, such as external fields and curvature,
is typically multivalued. This unusual form allows small perturbations to
induce dynamic transitions between counter-propagating fronts and nucleate
spiral vortices. We use these findings to propose explanations for a few
numerical and experimental observations including spiral breakup driven by
advective fields, and spot splitting
From Labyrinthine Patterns to Spiral Turbulence
A new mechanism for spiral vortex nucleation in nongradient reaction
diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch
type front bifurcation and an instability of a planar front to transverse
perturbations. Vortex nucleation by this mechanism plays an important role in
inducing a transition from labyrinthine patterns to spiral turbulence. PACS
numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip
The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance
Dynamics of reentry are studied in a one dimensional loop of model cardiac
cells with discrete intercellular gap junction resistance (). Each cell is
represented by a continuous cable with ionic current given by a modified
Beeler-Reuter formulation. For below a limiting value, propagation is found
to change from period-1 to quasi-periodic () at a critical loop length
() that decreases with . Quasi-periodic reentry exists from
to a minimum length () that is also shortening with .
The decrease of is not a simple scaling, but the bifurcation can
still be predicted from the slope of the restitution curve giving the duration
of the action potential as a function of the diastolic interval. However, the
shape of the restitution curve changes with .Comment: 6 pages, 7 figure
Propagation Failure in Excitable Media
We study a mechanism of pulse propagation failure in excitable media where
stable traveling pulse solutions appear via a subcritical pitchfork
bifurcation. The bifurcation plays a key role in that mechanism. Small
perturbations, externally applied or from internal instabilities, may cause
pulse propagation failure (wave breakup) provided the system is close enough to
the bifurcation point. We derive relations showing how the pitchfork
bifurcation is unfolded by weak curvature or advective field perturbations and
use them to demonstrate wave breakup. We suggest that the recent observations
of wave breakup in the Belousov-Zhabotinsky reaction induced either by an
electric field or a transverse instability are manifestations of this
mechanism.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud
Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm
Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium
The spatiotemporal dynamics of an excitable medium with multiple spiral
defects is shown to vary smoothly with system size from short-lived transients
for small systems to extensive chaos for large systems. A comparison of the
Lyapunov dimension density with the average spiral defect density suggests an
average dimension per spiral defect varying between three and seven. We discuss
some implications of these results for experimental studies of excitable media.Comment: 5 pages, Latex, 4 figure
THE AFFORDABLE CARE ACT AND AMBULANCE RESPONSE TIMES
This study contributes to the literature on supply-side adjustments to insurance expansions by examining the effect of the Affordable Care Act (ACA) on ambulance response times. Exploiting temporal and geographic variation in the implementation of the ACA as well as pre-treatment differences in uninsured rates, we estimate that the expansions of private and Medicaid coverage under the ACA combined to slow ambulance response times by an average of 19%. We conclude that, through extending coverage to individuals who, in its absence, would not have availed themselves of emergency medical services, the ACA added strain to emergency response systems
- …