90 research outputs found

    Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells

    Get PDF
    SummaryBackgroundThe Ral guanine nucleotide-exchange factors (RalGEFs) serve as key effectors for Ras oncogene transformation of immortalized human cells. RalGEFs are activators of the highly related RalA and RalB small GTPases, although only the former has been found to promote Ras-mediated growth transformation of human cells. In the present study, we determined whether RalA and RalB also had divergent roles in promoting the aberrant growth of pancreatic cancers, which are characterized by the highest occurrence of Ras mutations.ResultsWe now show that inhibition of RalA but not RalB expression universally reduced the transformed and tumorigenic growth in a panel of ten genetically diverse human pancreatic cancer cell lines. Despite the apparent unimportant role of RalB in tumorigenic growth, it was nevertheless critical for invasion in seven of nine pancreatic cancer cell lines and for metastasis as assessed by tail-vein injection of three different tumorigenic cell lines tested. Moreover, both RalA and RalB were more commonly activated in pancreatic tumor tissue than other Ras effector pathways.ConclusionsRalA function is critical to tumor initiation, whereas RalB function is more important for tumor metastasis in the tested cell lines and thus argues for critical, but distinct, roles of Ral proteins during the dynamic progression of Ras-driven pancreatic cancers

    Creating Porcine Biomedical Models Through Recombineering

    Get PDF
    Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to ā€˜forward geneticsā€™, in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the ā€˜reverse geneticsā€™ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse genetics, along with genomics, provides a working definition of a ā€˜genetic modelā€™ organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide ā€˜clonesā€™ of genetically modified animals

    Tethering Telomeric Double- and Single-stranded DNA-binding Proteins Inhibits Telomere Elongation

    Get PDF
    Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening

    A Genetic Porcine Model of Cancer

    Get PDF
    The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics to humans make it an ideal platform to develop a genetically defined, large animal model of cancer. To this end, we created a transgenic oncopig line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre directly into these oncopigs led to the rapid and reproducible tumor development of mesenchymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not have any tumor mass formation or altered histopathology. This oncopig line could thus serve as a genetically malleable model for potentially a wide spectrum of cancers, while controlling for temporal or spatial genesis, which should prove invaluable to studies previously hampered by the lack of a large animal model of cancer

    RALA and RALBP1 regulate mitochondrial fission atĀ mitosis

    Get PDF
    Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission1. Equal distribution of mitochondria to daughter cells during mitosis requires fission2. Mitotic mitochondrial fission depends upon both the relocalization of large GTPase Drp1 to the outer mitochondrial membrane and phosphorylation of S616 on Drp1 by the mitotic kinase cyclin B/Cdk12. We now report that these processes are mediated by the small Ras-like GTPase RalA and its effector RalBP1 (RLIP76/RLIP1/RIP1)3,4. Specifically, the mitotic kinase Aurora A phosphorylates S194 of RalA, relocalizing it to the mitochondria, where it concentrates RalBP1 and Drp1. Furthermore, RalBP1 associates with cyclin B/Cdk1 kinase activity to foster phosphorylation of Drp1 on S616. Disrupting either RalA or RalBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B/Cdk1 converge upon RalA and RalBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function

    Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization.

    Get PDF
    ABSTRACT The immortalization of human cells is a critical step during tumorigenesis. In vitro, normal human somatic cells must overcome two proliferative blockades, senescence and crisis, to become immortal. Transformation with viral oncogenes extends the life span of human cells beyond senescence. Such transformed cells eventually succumb to crisis, a period of widespread cellular death that has been proposed to be the result of telomeric shortening. We now show that ectopic expression of the telomerase catalytic subunit (human telomerase reverse transcriptase or hTERT) and subsequent activation of telomerase can allow postsenescent cells to proliferate beyond crisis, the last known proliferative blockade to cellular immortality. Moreover, we demonstrate that alteration of the carboxyl terminus of human telomerase reverse transcriptase does not affect telomerase enzymatic activity but impedes the ability of this enzyme to maintain telomeres. Telomerase-positive cells expressing this mutant enzyme fail to undergo immortalization, further tightening the connection between telomere maintenance and immortalization

    Distinct responses to rare codons in select Drosophila tissues

    Get PDF
    Codon usage bias has long been appreciated to influence protein production. Yet, relatively few studies have analyzed the impacts of codon usage on tissue-specific mRNA and protein expression. Here, we use codon-modified reporters to perform an organism-wide screen in Drosophila melanogaster for distinct tissue responses to codon usage bias. These reporters reveal a cliff-like decline of protein expression near the limit of rare codon usage in endogenously expressed Drosophila genes. Near the edge of this limit, however, we find the testis and brain are uniquely capable of expressing rare codon-enriched reporters. We define a new metric of tissue-specific codon usage, the tissue-apparent Codon Adaptation Index (taCAI), to reveal a conserved enrichment for rare codon usage in the endogenously expressed genes of both Drosophila and human testis. We further demonstrate a role for rare codons in an evolutionarily young testis-specific gene, RpL10Aa. Optimizing RpL10Aa codons disrupts female fertility. Our work highlights distinct responses to rarely used codons in select tissues, revealing a critical role for codon bias in tissue biology

    Copper is required for oncogenic BRAF signalling and tumorigenesis

    Get PDF
    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers

    Defining the mode, energetics and specificity with which a macrocyclic hexaoxazole binds to human telomeric G-quadruplex DNA

    Get PDF
    Oxazole-containing macrocycles represent a promising class of anticancer agents that target G-quadruplex DNA. We report the results of spectroscopic studies aimed at defining the mode, energetics and specificity with which a hexaoxazole-containing macrocycle (HXDV) binds to the intramolecular quadruplex formed by the human telomeric DNA model oligonucleotide d(T2AG3)4 in the presence of potassium ions. HXDV binds solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. HXDV binds d(T2AG3)4 with a stoichiometry of two drug molecules per quadruplex, with these binding reactions being coupled to the destacking of adenine residues from the terminal G-tetrads. HXDV binding to d(T2AG3)4 does not alter the length of the quadruplex. These collective observations are indicative of a nonintercalative ā€˜terminal cappingā€™ mode of interaction in which one HXDV molecule binds to each end of the quadruplex. The binding of HXDV to d(T2AG3)4 is entropy driven, with this entropic driving force reflecting contributions from favorable drug-induced alterations in the configurational entropy of the host quadruplex as well as in net hydration. The ā€˜terminal cappingā€™ mode of binding revealed by our studies may prove to be a general feature of the interactions between oxazole-containing macrocyclic ligands (including telomestatin) and intramolecular DNA quadruplexes
    • ā€¦
    corecore