2,050 research outputs found

    Ab initio parametrised model of strain-dependent solubility of H in alpha-iron

    Full text link
    The calculated effects of interstitial hydrogen on the elastic properties of alpha-iron from our earlier work are used to describe the H interactions with homogeneous strain fields using ab initio methods. In particular we calculate the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For comparison, these interactions are parametrised successfully using a simple model with parameters entirely derived from ab initio methods. The results are used to predict the solubility of H in spatially-varying elastic strain fields, representative of realistic dislocations outside their core. We find a strong directional dependence of the H-dislocation interaction, leading to strong attraction of H by the axial strain components of edge dislocations and by screw dislocations oriented along the critical slip direction. We further find a H concentration enhancement around dislocation cores, consistent with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187), minor changes from previous version

    Validation of a fornix depth measurer: a putative tool for the assessment of progressive cicatrising conjunctivitis

    Get PDF
    Background/aims Documentation of conjunctival forniceal foreshortening in cases of progressive cicatrising conjunctivitis (PCC) is important in ascertaining disease stage and progression. Lower fornix shortening is often documented subjectively or semi-objectively, whereas upper forniceal obliteration is seldom quantified. Although tools such as fornix depth measurers (FDMs) have been described, their designs limit upper fornix measurement. The purpose of this study was to custom-design a FDM to evaluate the upper fornix and to assess variability in gauging fornix depth. \ud \ud Methods A polymethylmethacrylate FDM was constructed using industry-standard jewellery computer software and machinery. Two observers undertook a prospective independent evaluation of central lower fornix depth in a heterogeneous cohort of patients with clinically normal and abnormal conjunctival fornices both subjectively and by using the FDM (in mm). Upper central fornix depth was also measured. Agreement was assessed using Bland–Altman plots. \ud \ud Results Fifty-one eyes were evaluated. There was 100% intraobserver agreement to within 1 mm for each observer for lower fornix measurement. The mean difference in fornix depth loss using the FDM between observer 1 and 2 was 1.19%, with 95% confidence of agreement (±2SD) of −15% to +20%. In total, 86% (44/51) of measurements taken by the two observers agreed to within 10% of total lower fornix depth (ie, ±1 mm) versus only 63% (32/51) of the subjective measurements. Mean upper fornix difference was 0.57 mm, with 95% confidence of agreement of between −2 and + 3 mm. \ud \ud Conclusions This custom-designed FDM is well tolerated by patients and shows low intraobserver and interobserver variability. This enables repeatable and reproducible measurement of upper and lower fornix depths, facilitating improved rates of detection and better monitoring of progression of conjunctival scarring

    A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis

    Get PDF
    We present a mode identification based on new high-resolution time-series spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V = 6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN) campaign, utilizing high-resolution spectroscopy and simultaneous photometry has been conducted for FG~Vir in order to provide a theoretical pulsation model. In this campaign we have acquired 969 Echelle spectra covering 147 hours at six observatories. The mode identification was carried out by analyzing line profile variations by means of the Fourier parameter fit method, where the observational Fourier parameters across the line are fitted with theoretical values. This method is especially well suited for determining the azimuthal order m of non-radial pulsation modes and thus complementary with the method of Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15 frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We determined the azimuthal order m of 12 modes and constrained their harmonic degree l. Only modes of low degree (l <= 4) were detected, most of them having axisymmetric character mainly due to the relatively low projected rotational velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders between -2 and 1. We derived an inclination of 19 degrees, which implies an equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure

    On-line relational SOM for dissimilarity data

    No full text
    International audienceIn some applications and in order to address real world situations better, data may be more complex than simple vectors. In some examples, they can be known through their pairwise dissimilarities only. Several variants of the Self Organizing Map algorithm were introduced to generalize the original algorithm to this framework. Whereas median SOM is based on a rough representation of the prototypes, relational SOM allows representing these prototypes by a virtual combination of all elements in the data set. However, this latter approach suffers from two main drawbacks. First, its complexity can be large. Second, only a batch version of this algorithm has been studied so far and it often provides results having a bad topographic organization. In this article, an on-line version of relational SOM is described and justified. The algorithm is tested on several datasets, including categorical data and graphs, and compared with the batch version and with other SOM algorithms for non vector data

    AGB subpopulations in the nearby globular cluster NGC 6397

    Get PDF
    It has been well established that Galactic Globular clusters (GCs) harbour more than one stellar population, distinguishable by the anti-correlations of light element abundances (C-N, Na-O, and Mg-Al). These studies have been extended recently to the asymptotic giant branch (AGB). Here we investigate the AGB of NGC 6397 for the first time. We have performed an abundance analysis of high-resolution spectra of 47 RGB and 8 AGB stars, deriving Fe, Na, O, Mg and Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB and RGB in NGC 6397 are identical, within uncertainties. This agrees with expectations from stellar theory. This GC acts as a control for our earlier work on the AGB of M 4 (with contrasting results), since the same tools and methods were used.Comment: 10 pages, 7 figures, 8 tables (2 online-only). Accepted for publication in MNRA

    Role of the antisymmetric exchange in quantum spin liquids

    Get PDF
    The quantum critical state of organic quantum spin liquids (QSL) exhibits large sensitivity even to weak perturbations. For example, the antisymmetric exchange, the Dzyaloshinskii-Moriya (DM) interaction, which is present in all spin systems without inversion symmetry, could result in a phase transition from the quantum critical phase to an antiferromagnetic phase already at moderate magnetic fields. Using the combination of multi-frequency Electron Spin Resonance spectroscopy (ESR) in the 1-500 GHz frequency range and muon spin rotation (mSR), we studied the influence of the DM interaction in two-dimensional and quasi-one-dimensional organic QSL candidates. In the triangular lattice QSL, k-(ET)2Ag2(CN)3 (J’/J=0.94, J=175 K), our ESR measurements found a static staggered moment of 6×10-3 mB at T=1.5 K and at B=15 T [1]. The magnetic field dependence of the ESR linewidth, which measures the spectral density of the antiferromagnetic fluctuations, proves that this staggered moment stems from the DM interaction (DM0=4 K) in a perfectly crystalline two-dimensional structure. In a new quasi-one-dimensional QSL candidate, (EDT-TTF-CONH2)2+BABCO-, which is a weak Mott insulator with a distorted triangular lattice (J’/J=3, J=360 K), our combined ESR and mSR study confirmed the absence of magnetic ordering down to 20 mK [2]. This remarkable observation is partially attributed to a unique structural motif of the (EDT-TTF-CONH2)2+BABCO- salt. Here, the (EDT-TTF-CONH2)2+ conducting layers are separated by the highly disordered BABCO- molecular rotors. Importantly, despite the presence of a sizable DM interaction (DM0=0.6 K), the staggered moment is smaller than 4×10-4 mB at T=1.5 K and B=15 T. The magnetic field dependence of the ESR linewidth does not show the effect of the DM interaction. Instead, the linear dependence is indicative of the presence of fast spin fluctuations, which is supported by longitudinal-field mSR measurements that reveal the spin excitations to possess one-dimensional diffusive character. The quenching of the effect of the DM interaction is explained by the strong disorder introduced by the anion layer. Despite the fact that the magnitude of the DM interaction is 2 to 3 orders of magnitude weaker than the symmetric exchange, it can substantially alter the phase diagram of QSLs. Our work gives a novel explanation to the field-induced phase transitions, and it demonstrates that high-frequency ESR is a powerful technique to study the spin dynamics of QSLs

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Four nearby L dwarfs

    Get PDF
    We present spectroscopic, photometric and astrometric observations of four bright L dwarfs identified in the course of the 2MASS near-infrared survey. Our spectroscopic data extend to wavelengths shortward of 5000\AA in the L0 dwarf 2MASSJ0746+2000 and the L4 dwarf 2MASSJ0036+1840, allowing the identification of absorption bands due to MgH and CaOH. The atomic resonance lines Ca I 4227\AA and Na I 5890/5896\AA are extremely strong, with the latter having an equivalent width of 240\AA in the L4 dwarf. By spectral type L5, the D lines extend over 1000\sim1000\AA and absorb a substantial fraction of the flux emitted in the V band, with a corresponding effect on the (V-I) broadband colour. The KI resonance doublet at 7665/7699\AA increases in equivalent width from spectral type M3 to M7, but decreases in strength from M7 to L0 before broadening substantially at later types. These variations are likely driven by dust formation in these cool atmospheres.Comment: to appear in AJ, January 2000; 27 pages, including 3 tables and 7 figures embedded in the tex

    Multifractal burst in the spatio-temporal dynamics of jerky flow

    Full text link
    The collective behavior of dislocations in jerky flow is studied in Al-Mg polycrystalline samples subjected to constant strain rate tests. Complementary dynamical, statistical and multifractal analyses are carried out on the stress-time series recorded during jerky flow to characterize the distinct spatio-temporal dynamical regimes. It is shown that the hopping type B and the propagating type A bands correspond to chaotic and self-organized critical states respectively. The crossover between these types of bands is identified by a large spread in the multifractal spectrum. These results are interpreted on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001
    corecore