6 research outputs found

    SAND, a New Protein Family: From Nucleic Acid to Protein Structure and Function Prediction

    Get PDF
    As a result of genome, EST and cDNA sequencing projects, there are huge numbers of predicted and/or partially characterised protein sequences compared with a relatively small number of proteins with experimentally determined function and structure. Thus, there is a considerable attention focused on the accurate prediction of gene function and structure from sequence by using bioinformatics. In the course of our analysis of genomic sequence from Fugu rubripes, we identified a novel gene, SAND, with significant sequence identity to hypothetical proteins predicted in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, a Drosophila melanogaster gene, and mouse and human cDNAs. Here we identify a further SAND homologue in human and Arabidopsis thaliana by use of standard computational tools. We describe the genomic organisation of SAND in these evolutionarily divergent species and identify sequence homologues from EST database searches confirming the expression of SAND in over 20 different eukaryotes. We confirm the expression of two different SAND paralogues in mammals and determine expression of one SAND in other vertebrates and eukaryotes. Furthermore, we predict structural properties of SAND, and characterise conserved sequence motifs in this protein family

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Timing the switch to phototrophic growth: A possible role of GUN1

    No full text
    In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development

    A rapid and robust method of identifying transformed <it>Arabidopsis thaliana </it>seedlings following floral dip transformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The floral dip method of transformation by immersion of inflorescences in a suspension of <it>Agrobacterium </it>is the method of choice for <it>Arabidopsis </it>transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants.</p> <p>Results</p> <p>A method for identifying transformed seedlings in as little as 3.25 d has been developed. <it>Arabidopsis </it>T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d). Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm) whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm).</p> <p>Conclusion</p> <p>The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.</p
    corecore