1,544 research outputs found
Validity of a noninvasive estimation of deep body temperature when wearing personal protective equipment during exercise and recovery
©2019 The Authors. Published by BMC. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1186/s40779-019-0208-7© 2019 The Author(s). Background: Deep body temperature is a critical indicator of heat strain. However, direct measures are often invasive, costly, and difficult to implement in the field. This study assessed the agreement between deep body temperature estimated from heart rate and that measured directly during repeated work bouts while wearing explosive ordnance disposal (EOD) protective clothing and during recovery. Methods: Eight males completed three work and recovery periods across two separate days. Work consisted of treadmill walking on a 1% incline at 2.5, 4.0, or 5.5 km/h, in a random order, wearing EOD protective clothing. Ambient temperature and relative humidity were maintained at 24 °C and 50% [Wet bulb globe temperature (WBGT) (20.9 ± 1.2) °C] or 32 °C and 60% [WBGT (29.0 ± 0.2) °C] on the separate days, respectively. Heart rate and gastrointestinal temperature (TGI) were monitored continuously, and deep body temperature was also estimated from heart rate (ECTemp). Results: The overall systematic bias between TGI and ECTemp was 0.01 °C with 95% limits of agreement (LoA) of ±0.64 °C and a root mean square error of 0.32 °C. The average error statistics among participants showed no significant differences in error between the exercise and recovery periods or the environmental conditions. At TGI levels of (37.0-37.5) °C, (37.5-38.0) °C, (38.0-38.5) °C, and > 38.5 °C, the systematic bias and ± 95% LoA were (0.08 ± 0.58) °C, (-0.02 ± 0.69) °C, (-0.07 ± 0.63) °C, and (-0.32 ± 0.56) °C, respectively. Conclusions: The findings demonstrate acceptable validity of the ECTemp up to 38.5 °C. Conducting work within an ECTemp limit of 38.4 °C, in conditions similar to the present study, would protect the majority of personnel from an excessive elevation in deep body temperature (> 39.0 °C).This project was financially supported by the Australian Government, managed by the National Security Science & Technology Centre within the Defence Science & Technology Organisation, and the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio
Future trends of marine fish biomass distributions from the North Sea to the Barents Sea
\ua9 The Author(s) 2024. Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species’ ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes
Temporal variance of disturbance did not affect diversity and structure of a marine fouling community in north-eastern New Zealand
Natural heterogeneity in ecological parameters, like population abundance, is more widely recognized and investigated than variability in the processes that control these parameters. Experimental ecologists have focused mainly on the mean intensity of predictor variables and have largely ignored the potential to manipulate variances in processes, which can be considered explicitly in experimental designs to explore variation in causal mechanisms. In the present study, the effect of the temporal variance of disturbance on the diversity of marine assemblages was tested in a field experiment replicated at two sites on the northeast coast of New Zealand. Fouling communities grown on artificial settlement substrata experienced disturbance regimes that differed in their inherent levels of temporal variability and timing of disturbance events, while disturbance intensity was identical across all levels. Additionally, undisturbed assemblages were used as controls. After 150 days of experimental duration, the assemblages were then compared with regard to their species richness, abundance and structure. The disturbance effectively reduced the average total cover of the assemblages, but no consistent effect of variability in the disturbance regime on the assemblages was detected. The results of this study were corroborated by the outcomes from simultaneous replicate experiments carried out in each of eight different biogeographical regions around the world
Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
The standard approach to analyzing 16S tag sequence data, which relies on
clustering reads by sequence similarity into Operational Taxonomic Units
(OTUs), underexploits the accuracy of modern sequencing technology. We present
a clustering-free approach to multi-sample Illumina datasets that can identify
independent bacterial subpopulations regardless of the similarity of their 16S
tag sequences. Using published data from a longitudinal time-series study of
human tongue microbiota, we are able to resolve within standard 97% similarity
OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S
tags differing by as little as 1 nucleotide (99.2% similarity). A comparative
analysis of oral communities of two cohabiting individuals reveals that most
such subpopulations are shared between the two communities at 100% sequence
identity, and that dynamical similarity between subpopulations in one host is
strongly predictive of dynamical similarity between the same subpopulations in
the other host. Our method can also be applied to samples collected in
cross-sectional studies and can be used with the 454 sequencing platform. We
discuss how the sub-OTU resolution of our approach can provide new insight into
factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures +
supplement. Significantly revised for clarity, references added, results not
change
- …