33,979 research outputs found
Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3
We present a study of the effect of very high pressure on the orthorhombic
perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to
53.2 GPa. The experimental results yield a structural and insulator-to-metal
phase transition close to 50 GPa, from an orthorhombic to a metrically cubic
structure. The phase transition is of first order with a pressure hysteresis of
about 6 GPa. The observed behavior under very high pressure might well be a
general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table
Ballistic resistivity in aluminum nanocontacts
One of the major industrial challenges is to profit from some fascinating
physical features present at the nanoscale. The production of dissipationless
nanoswitches (or nanocontacts) is one of such attractive applications.
Nevertheless, the lack of knowledge of the real efficiency of electronic
ballistic/non dissipative transport limits future innovations. For multi-valent
metallic nanosystems -where several transport channels per atom are involved-
the only experimental technique available for statistical transport
characterization is the conductance histogram. Unfortunately its interpretation
is difficult because transport and mechanical properties are intrinsically
interlaced. We perform a representative series of semiclassical molecular
dynamics simulations of aluminum nanocontact breakages, coupled to full quantum
conductance calculations, and put in evidence a linear relationship between the
conductance and the contact minimum cross-section for the geometrically favored
aluminum nanocontact configurations. Valid in a broad range of conductance
values, such relation allows the definition of a transport parameter for
nanomaterials, that represents the novel concept of ballistic resistivity
csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation
published_or_final_versio
Knowledge Acquisition by Networks of Interacting Agents in the Presence of Observation Errors
In this work we investigate knowledge acquisition as performed by multiple
agents interacting as they infer, under the presence of observation errors,
respective models of a complex system. We focus the specific case in which, at
each time step, each agent takes into account its current observation as well
as the average of the models of its neighbors. The agents are connected by a
network of interaction of Erd\H{o}s-Renyi or Barabasi-Albert type. First we
investigate situations in which one of the agents has a different probability
of observation error (higher or lower). It is shown that the influence of this
special agent over the quality of the models inferred by the rest of the
network can be substantial, varying linearly with the respective degree of the
agent with different estimation error. In case the degree of this agent is
taken as a respective fitness parameter, the effect of the different estimation
error is even more pronounced, becoming superlinear. To complement our
analysis, we provide the analytical solution of the overall behavior of the
system. We also investigate the knowledge acquisition dynamic when the agents
are grouped into communities. We verify that the inclusion of edges between
agents (within a community) having higher probability of observation error
promotes the loss of quality in the estimation of the agents in the other
communities.Comment: 10 pages, 7 figures. A working manuscrip
Open hardware and software robotics competition for additional engagement in ECE students - the Robot@Factory lite case study
Throughout this paper, a competition created to enable an inter-connection between the academic and industrial paradigms is presented, using Open Hardware and Software. This competition is called Robot at Factory Lite and serves as a case study as an additional enrollment for students to apply knowledge in the fields of programming, perception, motion planning, task planning, autonomous robotic, among others.This work is financed by National Funds through the Portuguese funding agency, FCT- Fundação para a Ciência e a Tecnologia, with in project UIDB/50014/2020info:eu-repo/semantics/publishedVersio
Magnetic friction due to vortex fluctuation
We use Monte Carlo and molecular dynamics simulation to study a magnetic
tip-sample interaction. Our interest is to understand the mechanism of heat
dissipation when the forces involved in the system are magnetic in essence. We
consider a magnetic crystalline substrate composed of several layers
interacting magnetically with a tip. The set is put thermally in equilibrium at
temperature T by using a numerical Monte Carlo technique. By using that
configuration we study its dynamical evolution by integrating numerically the
equations of motion. Our results suggests that the heat dissipation in this
system is closed related to the appearing of vortices in the sample.Comment: 6 pages, 41 figure
- …