140 research outputs found
Progressive high-fluence epithelium-on accelerated corneal crosslinking: a novel corneal photodynamic therapy for early progressive keratoconus
PurposeTo assess the preliminary clinical results of a new, progressively higher fluence-pulsed light Epi-On accelerated crosslinking nomogram (PFPL M Epi-On ACXL) in the treatment of progressive keratoconus (KC).SettingSiena Crosslinking Center, Siena, Italy.MethodsA prospective pilot open, non-randomized interventional study, including 32 eyes of 32 young-adult patients over 26 years old with Stages I-III progressive KC undergoing PFPL M Epi-On ACXL, was conducted. Riboflavin loading was performed by using Paracel I 0.25% for 4 min and Paracel II 0.22% for 6 min. The Avedro KXL System (Glaukos-Avedro, Burlington, USA) was used for pulsed-light accelerated crosslinking (ACXL) at air room 21% oxygenation and 13 min of UV-A irradiation. The treatment fluence was set at 7.2 J/cm2, 8.6 J/cm2, and 10.0 J/cm2 in corneas with baseline pachymetry <420 μm (group 1: 8 eyes), ≥ 420 μm <460 μm (group 2, 11 eyes), and ≥ 460 μm (group 3, 13 eyes), respectively. Uncorrected distance visual acuity (UDVA), best-spectacle corrected visual acuity (BSCVA), Scheimpflug corneal tomography, and anterior segment OCT (AS-OCT) data were collected at baseline and postoperatively at 1, 3, and 6 months.ResultsUDVA and BSCVA improved in all groups (P ≤ 0.05). Maximum keratometry values (K max) showed a significant decrease in the 10.0 J/cm2 group (Δ −1.68 D). The coma (HOAs) value improved significantly by the sixth month in all groups. OCT average demarcation lines were 211 ± 19 μm in group 1, 245 ± 23 μm in group 2, and 267 ± 21 μm in group 3.ConclusionsThe preliminary results show that pachymetry-based PFPL M Epi-On ACXL nomogram stabilizes ectasia progression. Higher fluence Epi-On ACXL increases CXL penetration, with better functional outcomes in the absence of complications
Selective transepithelial ablation with simultaneous accelerated corneal crosslinking for corneal regularization of keratoconus : STARE-X protocol
Publisher Copyright: Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of ASCRS and ESCRS.PURPOSE: To evaluate the changes in refractive outcomes and corneal aberrations in central and paracentral keratoconus after selective transepithelial topography-guided photorefractive keratectomy combined with accelerated corneal crosslinking (STARE-X). SETTINGS: Centro Polispecialistico Mediterraneo, Siena Crosslinking Center, and University of Messina, Italy. DESIGN: Prospective, interventional, multicentric study. METHODS: Patients were subdivided into 2 groups: Group 1 with cone located within the central 3 mm zone (50 eyes) and Group 2 (50 eyes) with cone located outside the central 3 mm zone. Follow-up was 2 years at least for all eyes. Outcome parameters included uncorrected distance visual acuity (UDVA) and corrected distance visual acuity (CDVA). Corneal tomography and corneal wavefront aberrations were assessed and compared before and 2 years after the treatment. RESULTS: 100 eyes of 100 patients underwent STARE-X protocol. At 2 years, UDVA and CDVA improved, and sphere, cylinder, and Kmax reduced after treatment in both groups (P < .001, respectively). Moreover, a statistically significant reduction was observed of total higher-order aberrations root main square (RMS), coma RMS, and spherical aberration RMS in both groups (P < .001, respectively). However, CDVA improved more in Group 1 than in Group 2 (P < .02). CONCLUSIONS: The STARE-X protocol demonstrated effective results in halting keratoconus progression and improving corneal regularity with a safe and effective profile. STARE-X improved both visual acuity and corneal aberration at 2 years. Longer follow-up studies are warranted to observe further long-term CXL flattening effect on the cone.Peer reviewe
Accelerated Corneal Collagen Cross-Linking Using Topography-Guided UV-A Energy Emission: Preliminary Clinical and Morphological Outcomes
Purpose. To assess the clinical and morphological outcomes of topography-guided accelerated corneal cross-linking. Design. Retrospective case series. Methods. 21 eyes of 20 patients with progressive keratoconus were enrolled. All patients underwent accelerated cross-linking using an ultraviolet-A (UVA) exposure with an energy release varying from 7.2 J/cm2 up to 15 J/cm2, according to the topographic corneal curvature. Uncorrected (UDVA) and corrected (CDVA) distance visual acuity, topography, in vivo confocal microscopy (IVCM), and anterior segment optic coherence tomography (AS-OCT) were evaluated preoperatively and at the 1, 3, 6, and 12 months postoperatively. Results. 12 months after surgery UDVA and CDVA did not significantly vary from preoperative values. The average topographic astigmatism decreased from -4.61±0.74 diopters (D) to -3.20±0.81 D and coma aberration improved from 0.95 ± 0.03 μm to 0.88 ± 0.04 μm after surgery. AS-OCT and IVCM documented differential effects on the treated areas using different energies doses. The depths of demarcation line and keratocyte apoptosis were assessed. Conclusions. Preliminary results show correspondence between the energy dose applied and the microstructural stromal changes induced by the cross-linking at various depths in different areas of treated cornea. One year after surgery a significant reduction in the topographic astigmatism and comatic aberration was detected. None of the patients developed significant complications
Ectropion and Conjunctival Mass in a Patient with Primary Bilateral Conjunctival Amyloidosis
Background. Amyloidosis is a group of disorders characterized by deposition of an extracellular protein, known as amyloid, in an abnormal fibrillar form with highly characteristic histopathologic staining properties. The clinical presentation can vary from a focal, localized lesion where amyloidosis has minor clinical consequences to extensive systemic disease that can involve any organ system of the body. Ocular amyloidosis can occur as a localized lesion or as a part of a systemic disorder. Conjunctival amyloidosis is an uncommon condition that is rarely associated with systemic disease. It may be a manifestation of an immunologic disorder. Case Report. We report the case of a patient with bilateral conjunctival amyloidosis who was referred to us with the suspicion of a malignant conjunctival lesion. Examination of both eyes showed a yellow-pink mass with prominent intrinsic vessels, subconjunctival hemorrhage, and ectropion of the left lower eyelid. Diagnosis of primary localized conjunctival amyloidosis was made based on histopathologic evaluation of incisional biopsy and negative systemic work-up. Conclusion. Ocular amyloidosis is a rare disease that is slowly progressive and has a wide variety of clinical presentations. Consequently, the clinical diagnosis is often overlooked or delayed. Definitive diagnosis is achieved through histopathologic evaluation of biopsy specimen
Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results
Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL) and continuous light accelerated corneal collagen crosslinking (cl-ACXL) with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA) with 8 minutes (1 sec. on/1 sec. off) of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA), corneal topography and aberrometry (CSO EyeTop, Florence, Italy), corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany), endothelial cells count (I-Conan Non Co Robot), and in vivo scanning laser confocal microscopy (Heidelberg, Germany) at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment
Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis
INTRODUCTION: The vascular and nervous systems have several anatomic and molecular mechanism similarities. Emerging evidence suggests that proteins involved in transmitting axonal guidance cues, including members of class III semaphorin (Sema3) family, play a critical role in blood vessel guidance during physiological and pathological vascular development. Sema3E is a natural antiangiogenic molecule that causes filopodial retraction in endothelial cells, inhibiting cell adhesion by disrupting integrin-mediated adhesive structures. The aim of the present study was to investigate whether in systemic sclerosis (SSc) Plexin-D1/Sema3E axis could be involved in the dysregulation of vascular tone control and angiogenesis. METHODS: Sema3E levels were measured by quantitative colorimetric sandwich ELISA in serum samples from 48 SSc patients, 45 subjects with primary Raynaud's phenomenon (pRP) and 48 age-matched and sex-matched healthy controls. Immunofluorescence staining on skin sections from 14 SSc patients and 12 healthy subjects was performed to evaluate Sema3E and Plexin-D1 expression. Western blotting was used to assess Plexin-D1/Sema3E axis in human SSc and healthy dermal microvascular endothelial cells (SSc-MVECs and H-MVECs, respectively) at basal condition and after stimulation with recombinant human vascular endothelial growth factor (VEGF), SSc and healthy sera. Capillary morphogenesis on Matrigel was performed on H-MVECs treated with healthy, pRP or SSc sera in the presence of Sema3E and Plexin-D1 soluble peptides. RESULTS: Serum Sema3E levels were significantly higher both in pRP subjects and SSc patients than in controls. In SSc, Sema3E levels were significantly increased in patients with early nailfold videocapillaroscopy (NVC) pattern compared to active/late patterns and pRP, and in patients without digital ulcers versus those with ulcers. In SSc skin, Sema3E expression was strongly increased in the microvascular endothelium. Cultured SSc-MVECs showed higher levels of phosphorylated Plexin-D1 and Sema3E expression than H-MVECs, and stimulation with SSc sera increased phosphorylated Plexin-D1 and Sema3E in H-MVECs. The addition of Sema3E-binding Plexin-D1 soluble peptide significantly attenuated the antiangiogenic effect of SSc sera on H-MVECs. CONCLUSIONS: Our findings suggest that Plexin-D1/Sema3E axis is triggered in SSc endothelium and may have a role in the dysregulation of angiogenesis and vascular tone control by inducing neuro-vascular mechanism alterations clinically evident in particular in the early disease phases
Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells
BACKGROUND: Systemic sclerosis (SSc) is characterized by endothelial cell (EC) apoptosis, impaired angiogenesis and peripheral microvasculopathy. Soluble α-Klotho (sKl) is a pleiotropic molecule with multiple effects on ECs, including antioxidant and vasculoprotective activities. On the EC surface, sKl interacts with vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) and transient receptor potential canonical-1 (TRPC-1) cation channel to control EC homeostasis. Here, we investigated whether sKl might act as a protective factor to improve angiogenesis in dermal microvascular endothelial cells (MVECs) from SSc patients (SSc-MVECs). METHODS: Wound healing assay was performed on healthy dermal MVECs (H-MVECs) challenged with sera from healthy controls or SSc patients with or without the addition of sKl. Capillary morphogenesis on Matrigel was assessed in H-MVECs and SSc-MVECs at basal conditions and treated with sKl, as well as in H-MVECs challenged with healthy or SSc sera in presence or absence of sKl. The expression of α-Klotho, VEGF(165)b, VEGFR-2, TRPC-1, Ki67 and active caspase-3 in H-MVECs and SSc-MVECs was investigated by western blotting. Immunostaining for α-Klotho was performed in H-MVECs and SSc-MVECs, and in healthy and SSc skin sections. RESULTS: Treatment with sKl effectively counteracted the inihibitory effects of SSc sera on wound healing ability and angiogenic performance of H-MVECs. The addition of sKl significantly improved angiogenesis and maintained over time capillary-like tube formation in vitro by SSc-MVECs. Stimulation of SSc-MVECs with sKl resulted in the upregulation of the proliferation marker Ki67 in parallel with the downregulation of proapoptotic active caspase-3. The expression of α-Klotho was significantly lower in SSc-MVECs than in H-MVECs. The expression of TRPC-1 was also significantly decreased, while that of VEGFR-2 and VEGF(165)b was significantly increased, in SSc-MVECs compared with H-MVECs. Challenge with sKl either significantly increased TRPC-1 or decreased VEGF(165)b in SSc-MVECs. Ex vivo analyses revealed that α-Klotho immunostaining was almost absent in the dermal microvascular network of SSc skin compared with control skin. CONCLUSIONS: Our findings provide the first evidence that α-Klotho is significantly decreased in the microvasculature in SSc skin and that sKl administration may effectively improve SSc-MVEC functions in vitro by acting as a powerful proangiogenic factor
Esperienze, approfondimenti e ricerche nell’ambito dell’abbattimento del rumore con uso di dispositivi di protezione individuale
Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study
In the field of Ophthalmology, the mNGS 16S rRNA sequencing method of studying the microbiota and ocular microbiome is gaining more and more weight in the scientific community. This study aims to characterize the ocular microbiota of patients diagnosed with keratoconus who have not undergone any prior surgical treatment using the mNGS 16S rRNA sequencing method. Samples of naïve keratoconus patients were collected with an eNAT with 1 mL of Liquid Amies Medium (Copan Brescia, Italy), and DNA was extracted and analyzed with 16S NGS. The microbiota analysis showed a relative abundance of microorganisms at the phylum level in each sample collected from 38 patients with KC and 167 healthy controls. A comparison between healthy control and keratoconus samples identified two genera unique to keratoconus, Pelomonas and Ralstonia. Our findings suggest that alterations in the microbiota may play a role in the complex scenario of KC development
Ocular surface microbiome: Influences of physiological, environmental, and lifestyle factors
Purpose: The ocular surface (OS) microbiome is influenced by various factors and impacts on ocular health. Understanding its composition and dynamics is crucial for developing targeted interventions for ocular diseases. This study aims to identify host variables, including physiological, environmental, and lifestyle (PEL) factors, that influence the ocular microbiome composition and establish valid associations between the ocular microbiome and health outcomes. Methods: The 16S rRNA gene sequencing was performed on OS samples collected from 135 healthy individuals using eSwab. DNA was extracted, libraries prepared, and PCR products purified and analyzed. PEL confounding factors were identified, and a cross-validation strategy using various bioinformatics methods including Machine learning was used to identify features that classify microbial profiles. Results: Nationality, allergy, sport practice, and eyeglasses usage are significant PEL confounding factors influencing the eye microbiome. Alpha-diversity analysis revealed significant differences between Spanish and Italian subjects (p-value < 0.001), with a median Shannon index of 1.05 for Spanish subjects and 0.59 for Italian subjects. Additionally, 8 microbial genera were significantly associated with eyeglass usage. Beta-diversity analysis indicated significant differences in microbial community composition based on nationality, age, sport, and eyeglasses usage. Differential abundance analysis identified several microbial genera associated with these PEL factors. The Support Vector Machine (SVM) model for Nationality achieved an accuracy of 100%, with an AUC-ROC score of 1.0, indicating excellent performance in classifying microbial profiles. Conclusion: This study underscores the importance of considering PEL factors when studying the ocular microbiome. Our findings highlight the complex interplay between environmental, lifestyle, and demographic factors in shaping the OS microbiome. Future research should further explore these interactions to develop personalized approaches for managing ocular health
- …
