123 research outputs found
Quantitative analysis of cytokine-induced hepatocellular death in the context of hepatotoxic therapeutics
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2009."February 2009." Cataloged from PDF version of thesis.Includes bibliographical references (p. 161-178).Numerous therapeutics, such as viral gene therapy vectors, have unintended toxicity in part due to interactions with inflammatory cytokine signaling to elicit hepatocyte death, thus limiting their clinical use. Although much is known about how cytokines and certain therapeutics individually induce hepatotoxicity, there is little understanding of how they jointly regulate the complex cellular signaling network governing hepatocellular death. In this thesis, we explored the signaling mechanisms governing the cytokine-induced hepatocellular death in the context of adenoviral vector (Adv) infection and pharmaceutical compounds with idiosyncratic hepatotoxicity. Initially, we examined the role of autocrine and intracellular signaling pathways in governing the synergistic induction of hepatocyte apoptosis by the cytokine tumor necrosis factor-a (TNF) in the presence of Adv infection in a primary rat hepatocyte cell culture model. We demonstrated that Adv/TNF-induced hepatocyte apoptosis is regulated by a coupled and self-antagonizing autocrine signaling cascade involving the sequential release of anti-apoptotic transforming growth factor-a (TGF-a), pro-apoptotic interleukin- 1 a/p (IL-l a/), and anti-apoptotic IL- 1 receptor antagonist (IL- Ira). This three-part autocrine cascade regulates multiple intracellular signal pathways, including ERK and JNK, that serve to integrate TNF- and Adv-induced signals and govern the resultant hepatocellular death response. Following this, we demonstrated that numerous idiosyncratic hepatotoxins, whose hepatotoxicities are not evident in standard cell preclinical screening models, elicit synergistic induction of hepatocellular death upon multi-cytokine co-stimulation in primary rat and human hepatocyte cell culture models. We showed that this drugcytokine co-treatment model could be usefully scaled to the high-throughput demands of pharmaceutical screening while maintaining idiosyncratic hepatotoxicity prediction accuracy. To identify the signaling mechanisms regulating these drug/cytokine hepatocellular death synergies, we collected multi-pathway signal-response data compendia from two human hepatocyte donors. Through the use of partial least-squares regression modeling, we showed that hepatocytes integrate signals from four pathways -- ERK, Akt, mTOR, and p38 -- to specify their cell death responses to toxic drug/cytokine conditions and that accurate prediction of hepatocellular death responses can be made across human hepatocyte donors. Together, these findings demonstrate that cytokine-induced hepatocellular death in the context of hepatotoxic therapeutics is governed by integrated network activity of multiple autocrine and intracellular signaling pathways.by Benjamin D. Cosgrove.Ph.D
Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death
Multitarget compounds that act on a diverse set of regulatory pathways are emerging as a therapeutic approach for a variety of cancers. Toward a more specified use of this approach, we hypothesize that the desired efficacy can be recreated in terms of a particular combination of relatively more specific (i.e., ostensibly single target) compounds. We test this hypothesis for the geldanamycin analogue 17-Allylamino-17-demethoxygeldanamycin (17AAG) in hepatocellular carcinoma cells, measuring critical phosphorylation levels that indicate the kinase pathway effects correlating with apoptotic responsiveness of the Hep3B cell line in contrast to the apoptotic resistance of the Huh7 cell line. A principal components analysis (PCA) constructed from time course measurements of seven phosphoprotein signaling levels identified modulation of the AKT, IκB kinase, and signal transducer and activator of transcription 3 pathways by 17AAG treatment as most important for distinguishing these cell-specific death responses. The analysis correctly suggested from 17AAG-induced effects on these phosphoprotein levels that the FOCUS cell line would show apoptotic responsiveness similarly to Hep3B. The PCA also guided the inhibition of three critical pathways and rendered Huh7 cells responsive to 17AAG. Strikingly, in all three hepatocellular carcinoma lines, the three-inhibitor combination alone exhibited similar or greater efficacy to 17AAG. We conclude that (a) the PCA captures and clusters the multipathway phosphoprotein time courses with respect to their 17AAG-induced apoptotic responsiveness and (b) we can recreate, in a more specified manner, the cellular responses of a prospective multitarget cancer therapeutic.National Institute of General Medical Sciences (U.S.). Cell Decision Processes CenterNational Cancer Institute (U.S.). Integrative Cancer Biology ProgramMassachusetts Institute of Technology. Presidential FellowshipNational Institutes of Health (U.S.
Cytokine-associated drug toxicity in human hepatocytes is associated signaling network dysregulation
Refer to Web version on PubMed Central for supplementary material.Idiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor prediction capability of standard preclinical toxicity assessments and limited knowledge of its underlying mechanisms. Findings in animal models have shown that adverse effects of numerous drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident inflammatory cytokine signaling. Following these observations, we have recently developed an in vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug hepatotoxicity signatures—particularly for idiosyncratic drugs—in cultured primary human hepatocytes. These observations have suggested that drug-induced stresses may interact with cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors, treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1α, and interleukin-6). We demonstrate, through orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt, p70 S6 kinase, MEK–ERK, and p38–HSP27. This modeling predicted, and experimental studies confirmed, that the MEK–ERK and p38–HSP27 pathways contribute pro-death signaling influences in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio
Erratum to: Model Convolution: A Computational Approach to Digital Image Interpretation
Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called “model-convolution,” which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory
Determination of neo- and d-chiro-Inositol Hexakisphosphate in Soils by Solution 31P NMR Spectroscopy
The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP6) occur, although for three of these (scyllo, flea, and D-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and n-chiro-IP6 and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable P-31 NMR signals at delta = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP6) and delta = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of D-chiro-IP6) in soil extracts. Inositol hexakisphosphate accounted for 46-54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (n-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and D-chiro-IP6 occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and D-chiro-IP6 in the environment. The hypobromite oxidation and solution P-31 NMR spectroscopy procedure allows the simultaneous quantification of all four IP6 stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds
Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity
Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug–cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug–cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug–cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)National Institute of Mental Health (U.S.) (grant T32-GM008334)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio
Model Convolution: A Computational Approach to Digital Image Interpretation
Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called “model-convolution,” which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study
BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council
- …