32 research outputs found

    Nebulization of Phenolic Capsules for Pulmonary Delivery

    No full text
    Oral presentation at ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Annual Research Worksho

    Acoustically-mediated intracellular delivery

    Get PDF
    Recent breakthroughs in gene editing have necessitated practical ex vivo methods to rapidly and efficiently re-engineer patient-harvested cells. Many physical membrane-disruption or pore-forming techniques for intracellular delivery, however, result in poor cell viability, while most carrier-mediated techniques suffer from suboptimal endosomal escape and hence cytoplasmic or nuclear targeting. In this work, we show that short exposure of cells to high frequency (>10 MHz) acoustic excitation facilitates temporal reorganisation of the lipid structure in the cell membrane that enhances translocation of gold nanoparticles and therapeutic molecules into the cell within just ten minutes. Due to its transient nature, rapid cell self-healing is observed, leading to high cellular viabilities (>97%). Moreover, the internalised cargo appears to be uniformly distributed throughout the cytosol, circumventing the need for strategies to facilitate endosomal escape. In the case of siRNA delivery, the method is seen to enhance gene silencing by over twofold, demonstrating its potential for enhancing therapeutic delivery into cells

    A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions

    No full text
    Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine

    Particle-mediated delivery of frataxin plasmid to a human sensory neuronal model of Friedreich's ataxia.

    Get PDF
    Increasing frataxin protein levels through gene therapy is envisaged to improve therapeutic outcomes for patients with Friedreich's ataxia (FRDA). A non-viral strategy that uses submicrometer-sized multilayered particles to deliver frataxin-encoding plasmid DNA affords up to 27 000-fold increase in frataxin gene expression within 2 days in vitro in a stem cell-derived neuronal model of FRDA

    Particle Targeting in Complex Biological Media

    Get PDF
    Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications

    Immobilization and Intracellular Delivery of Structurally Nanoengineered Antimicrobial Peptide Polymers Using Polyphenol-Based Capsules

    No full text
    Structurally nanoengineered antimicrobial peptide polymers (SNAPPs) are an emerging class of antimicrobials against multidrug-resistant bacteria. Their encapsulation in particle carriers can improve their therapeutic efficacy by preventing peptide degradation, reducing clearance, and enhancing intracellular delivery and dosage to bacteria-infected host cells. Herein, two template-mediated strategies are reported for immobilizing SNAPPs in microcapsules through 1) complexation of SNAPPs with tannic acid (TA) onto porous CaCO3 templates and subsequent removal of the templates (SNAPP–TA capsules) and 2) adsorption of SNAPPs onto CaCO3 templates and subsequent encapsulation within a metal–phenolic (FeIII–TA) coating and template removal (SNAPP–FeIII–TA capsules). The loading amounts of SNAPPs are 0.8 and 4.4 pg per SNAPP–TA and SNAPP–FeIII–TA capsule, respectively. At pH 7.4, there is sustained release of SNAPPs, which retain high antimicrobial activity with minimum inhibitory concentration values of ≈30 µg mL−1 in Escherichia coli. Both capsule systems are internalized by alveolar macrophages in vitro, with negligible cytotoxicity and are amenable to nebulization, remaining stable in nebulized droplets. This study demonstrates the potential of engineered polyphenol-based capsules for peptide drug immobilization and intracellular delivery, which have prospective application in the pulmonary delivery of antimicrobials against respiratory bacterial infections (e.g., pneumonia, tuberculosis)

    Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Get PDF
    HIV-1 infection has been transformed by combined anti-retroviral therapy (ART), changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi), short interfering RNA (siRNA) induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials

    Probing Endosomal Escape Using pHlexi Nanoparticles

    Get PDF
    The effective escape of nanocarriers from endosomal compartments of the cell remains a major hurdle in nanomedicine. The endosomal escape of pH-responsive, self-assembled, dual component particles based on poly[2-(diethylamino)ethyl methacrylate)(PDEAEMA) and poly(ethylene glycol)-b-poly[2-(diethylamino)ethyl methacrylate) (PEG-b-PDEAEMA) has been recently reported. Herein, we report that polymer molecular weight (Mn ) can be used to tune endosomal escape of nanoparticle delivery systems. PDEAEMA of Mn 7 kDa, 27 kDa, 56 kDa and 106 kDa was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization and co-assembled with PEG-b-PDEAEMA (16 kDa) via nanoprecipitation. All particles had similar size, displayed pH-responsive behaviour, and low toxicity regardless of molecular weight. Ovalbumin was loaded in the particles to demonstrate loading and release capabilities and as a marker to study internalization and endosomal escape. Association and endosomal escape was found to depend on molecular weight, with enhanced escape observed for high Mn PDEAEMA: 42% of cells with particle induced endosomal escape for 106 kDa nanoparticles, compared to minimal escape for 7 kDa particles. The results show that a simple variation in molecular weight can enhance the endosomal escape of polymeric carriers, and thus improve their effectiveness for intracellular delivery of therapeutics

    In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design

    No full text
    T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases

    RNAi therapeutics: an antiviral strategy for human infections

    Get PDF
    Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies
    corecore