27 research outputs found

    Limitations on the ability to negotiate justice: Attorney perspectives on guilt, innocence, and legal advice in the current plea system

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordIn the American criminal justice system the vast majority of criminal convictions occur as the result of guilty pleas, often made as a result of plea bargains, rather than jury trials. The incentives offered in exchange for guilty pleas mean that both innocent and guilty defendants plead guilty. We investigate the role of attorneys in this context, through interviews with criminal defense attorneys. We examine defense attorney perspectives on the extent to which innocent defendants are (and should be) pleading guilty in the current legal framework and their views of their own role in this complex system. We also use a hypothetical case to probe the ways in which defense attorneys consider guilt or innocence when providing advice on pleas. Results indicate that attorney advice is influenced by guilt or innocence, but also that attorneys are limited in the extent to which they can negotiate justice for their clients in a system in which uncertainty and large discrepancies between outcomes of guilty pleas and conviction at trial can make it a sensible option to plead guilty even when innocent. Results also suggest conflicting opinions over the role of the attorney in the plea-bargaining process

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical

    No full text
    While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages
    corecore