9,338 research outputs found
Sparse error gait image: a new representation for gait recognition
The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained
A spatiotemporal deep learning approach for automatic pathological Gait classification
Human motion analysis provides useful information for the diagnosis and recovery assessment of people suffering from pathologies, such as those affecting the way of walking, i.e., gait. With recent developments in deep learning, state-of-the-art performance can now be achieved using a single 2D-RGB-camera-based gait analysis system, offering an objective assessment of gait-related pathologies. Such systems provide a valuable complement/alternative to the current standard practice of subjective assessment. Most 2D-RGB-camera-based gait analysis approaches rely on compact gait representations, such as the gait energy image, which summarize the characteristics of a walking sequence into one single image. However, such compact representations do not
fully capture the temporal information and dependencies between successive gait movements. This limitation is addressed by proposing a spatiotemporal deep learning approach that uses a selection of key frames to represent a gait cycle. Convolutional and recurrent deep neural networks were combined, processing each gait cycle as a collection of silhouette key frames, allowing the system to learn temporal patterns among the spatial features extracted at individual time instants. Trained with gait sequences from the GAIT-IT dataset, the proposed system is able to improve gait pathology classification accuracy, outperforming state-of-the-art solutions and achieving improved generalization on cross-dataset tests.info:eu-repo/semantics/publishedVersio
Gait recognition in the wild using shadow silhouettes
Gait recognition systems allow identification of users relying on features acquired from their body movement while walking. This paper discusses the main factors affecting the gait features that can be acquired from a 2D video sequence, proposing a taxonomy to classify them across four dimensions. It also explores the possibility of obtaining users’ gait features from the shadow silhouettes by proposing a novel gait recognition system. The system includes novel methods for: (i) shadow segmentation, (ii) walking direction identification, and (iii) shadow silhouette rectification. The shadow segmentation is performed by fitting a line through the feet positions of the user obtained from the gait texture image (GTI). The direction of the fitted line is then used to identify the walking direction of the user. Finally, the shadow silhouettes thus obtained are rectified to compensate for the distortions and deformations resulting from the acquisition setup, using the proposed four-point correspondence method. The paper additionally presents a new database, consisting of 21 users moving along two walking directions, to test the proposed gait recognition system. Results show that the performance of the proposed system is equivalent to that of the state-of-the-art in a constrained setting, but performing equivalently well in the wild, where most state-of-the-art methods fail. The results also highlight the advantages of using rectified shadow silhouettes over body silhouettes under certain conditions.info:eu-repo/semantics/acceptedVersio
View-invariant gait recognition system using a gait energy image decomposition method
Gait recognition systems can capture biometrical information from a distance and without the user's active cooperation, making them suitable for surveillance environments. However, there are two challenges for gait recognition that need to be solved, namely when: (i) the walking direction is unknown and/or (ii) the subject's appearance changes significantly due to different clothes being worn or items being carried. This study discusses the problem of gait recognition in unconstrained environments and proposes a new system to tackle recognition when facing the two listed challenges. The system automatically identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait energy image (GEI) and then compares it against the PHash values of different walking directions stored in the database. Robustness against appearance changes are obtained by decomposing the GEI into sections and selecting those sections unaltered by appearance changes for comparison against a database containing GEI sections for the identified walking direction. The proposed recognition method then recognises the user using a majority decision voting. The proposed view-invariant gait recognition system is computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance.info:eu-repo/semantics/acceptedVersio
Using transfer learning for classification of gait pathologies
Different diseases can affect an individual’s gait in different ways and, therefore, gait analysis can provide important insights into an individual’s health and well-being. Currently, most systems that perform gait analysis using 2D video are limited to simple binary classification of gait as being either normal or impaired. While some systems do perform gait classification across different pathologies, the reported results still have a considerable margin for improvement. This paper presents a novel system that performs classification of gait across different pathologies, with considerably improved results. The system computes the walking individual’s silhouettes, which are computed from a 2D video sequence, and combines them into a representation known as the gait energy image (GEI), which provides robustness against silhouette segmentation errors. In this work, instead of using a set of handcrafted gait features, feature extraction is done using the VGG-19 convolutional neural network. The network is fine-tuned to automatically extract the features that best represent gait pathologies, using transfer learning. The use of transfer learning improves the classification accuracy while avoiding the need of a very large training set, as the network is pre-trained for generic image description, which also contributes to a better generalization when tested across different datasets. The proposed system performs the final classification using linear discriminant analysis (LDA). Obtained results show that the proposed system outperforms the state-of-the-art, achieving a classification accuracy of 95% on a dataset containing gait sequences affected by diplegia, hemiplegia, neuropathy and Parkinson’s disease, along with normal gait sequences.info:eu-repo/semantics/acceptedVersio
View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric
In gait recognition, when subjects do not follow a known walking trajectory, the comparison against a database may be rendered impossible. Some proposed solutions rely on learning and mapping the appearance of silhouettes along various views, with some limitations caused for instance by appearance changes (e.g. coats or bags). The present paper discusses this problem and proposes a novel solution for automatic viewing angle identification, using minimal information computed from the walking person silhouettes, while being robust against appearance changes. The proposed method is more efficient and provides improved results when compared to the available alternatives. Moreover, unlike most state-of-the- art methods, it does not require a training stage. The paper also discusses the use of a dissimilarity metric for the recognition stage. Dissimilarity metrics have shown interesting results in several recognition systems. This paper also attests the strength of a dissimilarity-based approach for gait recognition.info:eu-repo/semantics/acceptedVersio
Hand-based multimodal identification system with secure biometric template storage
WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio
Remote Gait type classification system using markerless 2D video
Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s health and recovery. Simple vision-based systems have a considerable potential in this area, as they allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the required computations can be done remotely. State-of-the-art vision-based systems for gait analysis use deep learning strategies, thus requiring a large amount of data for training. However, to the best of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects, simulating 5 types of gait.
This paper presents a new dataset, GAIT-IT, captured from 21 subjects simulating 5 types of gait, at 2 severity levels. The dataset is recorded in a professional studio, making the sequences free of background camouflage, variations in illumination and other visual artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters, memory requirements and execution times, while the classification accuracy is on par with the state-of-the-art.
Recognizing the importance of remote healthcare, the proposed automatic gait analysis system is integrated with a prototype web application. This prototype is presently hosted in a private network, and after further tests and development it will allow people to upload a video of them walking and execute a web service that classifies their gait. The web application has a user-friendly interface usable by healthcare professionals or by laypersons. The application also makes an association between the identified type of gait and potential gait pathologies that exhibit the identified characteristics.info:eu-repo/semantics/publishedVersio
Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding
WOS:000298962501022 (Nº de Acesso Web of Science)Holoscopic imaging, also known as integral imaging, provides a solution for glassless 3D, and is promising to change the market for 3D television. To start, this paper briefly describes the general concepts of holoscopic imaging, focusing mainly on the spatial correlations inherent to this new type of content, which appear due to the micro-lens array that is used for both acquisition and display. The micro-images that are formed behind each micro-lens, from which only one pixel is viewed from a given observation point, have a high cross-correlation between them, which can be exploited for coding. A novel scheme for spatial prediction, exploring the particular arrangement of holoscopic images, is proposed. The proposed scheme can be used for both still image coding and intra-coding of video. Experimental results based on an H.264/AVC video codec modified to handle 3D holoscopic images and video are presented, showing the superior performance of this approach
Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures
A study of the gas pressure effect in the position resolution of an
interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic
position resolution for pure noble gases (Argon and Xenon) and their mixtures
with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for
photon energies between 5.4 and 60.0 keV, being possible to establish a linear
match between the intrinsic position resolution and the inverse of the gas
pressure in that energy range. In order to evaluate the quality of the method
here described, a comparison between the available experimental data and the
calculated one in this work, is done and discussed. In the majority of the
cases, a strong agreement is observed
- …