7,559 research outputs found

    Ladders for Wilson Loops Beyond Leading Order

    Full text link
    We set up a general scheme to resum ladder diagrams for the quark-anti-quark potential in N=4 super-Yang-Mills theory, and do explicit calculations at the next-to-leading order. The results perfectly agree with string theory in AdS(5)xS(5) when continued to strong coupling, in spite of a potential order-of-limits problem.Comment: 18 pages, 5 figure

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For eiϕTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βcP/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Remarkable magnetostructural coupling around the magnetic transition in CeCo0.85_{0.85}Fe0.15_{0.15}Si

    Get PDF
    We report a detailed study of the magnetic properties of CeCo0.85_{0.85}Fe0.15_{0.15}Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo0.85_{0.85}Fe0.15_{0.15}Si becomes antiferromagnetic at TNT_N \approx 6.7 K. However, a broad tail (onset at TXT_X \approx 13 K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at TXT_X. A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion becomes a well pronounced peak fully split from the magnetic transition at TNT_N. Concurrently, the magnetoresistance also switches from negative to positive just below TXT_X. The magnetostriction is considerable and irreversible at low temperature (ΔLL(16T)\frac {\Delta L}{L} \left(16 T\right) \sim 4×\times104^{-4} at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low TT may be the signature of a weak ongoing metamagnetic transition. Taking altogether, the results indicate the importance of the lattice effects in the development of the magnetic order in these alloys.Comment: 5 pages, 6 figure

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ην=lnTνlnNν\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ην\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late

    Mirages and enhanced magnetic interactions in quantum corrals

    Full text link
    We develop a theory for the interactions between magnetic impurities in nanoscopic systems. The case of impurities in quantum corrals built on the (111) Cu surface is analyzed in detail. For elliptical corrals with one impurity, clear magnetic mirages are obtained. This leads to an enhancement of the inter-impurity interactions when two impurities are placed at special points in the corral. We discuss the enhancement of the conduction electron response to the local perturbation in other nanoscopic systems.Comment: 7 pages, 5 figure

    COMPARISON BETWEEN SINGLE AND DOUBLE INTEGRAL TRANSFORMATION SOLUTIONS OF HEAT CONDUCTION IN SOLID-STATE ELECTRONICS

    Get PDF
    The design of modern electronic devices has been dealing with challenges on thermal control. In this work, it is proposed two different ways of modeling the temperature field in Solid State Electronics (SSE) using integral transforms, with several heat generations in the domain of the microchip and external convection. Two proposed approaches solve the heat conduction formulation on the SSE using the Classical Integral Transform Technique (CITT): One performing a single transformation (CITT-ST) and the other performing a double transformation (CITT-DT). Both methodologies are compared and achieved similar results. The simpler analytical solution by CITT-DT contrasts with a complex and cumbersome analytical manipulation of CITT-ST. The results show that CITT-ST is more efficient to obtain the solution, requiring a lower truncation order, for the problem of heat conduction in Solid State Electronics even though it has a more complex formulation

    Analytic Solution of Bremsstrahlung TBA

    Full text link
    We consider the quark--anti-quark potential on the three sphere or the generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the vacuum potential in the near BPS limit with LL units of R-charge. Equivalently, we study the anomalous dimension of a super-Wilson loop with L local fields inserted at a cusp. The system is described by a recently proposed infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz (TBA) type. That system of TBA equations is very similar to the one of the spectral problem but simplifies a bit in the near BPS limit. Using techniques based on the Y-system of functional equations we first reduced the infinite system of TBA equations to a Finite set of Nonlinear Integral Equations (FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple analytic result for the potential! Surprisingly, we find that the system has equivalent descriptions in terms of an effective Baxter equation and in terms of a matrix model. At L=0, our result matches the one obtained before using localization techniques. At all other L's, the result is new. Having a new parameter, L, allows us to take the large L classical limit. We use the matrix model description to solve the classical limit and match the result with a string theory computation. Moreover, we find that the classical string algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio

    Asymptotic Bethe equations for open boundaries in planar AdS/CFT

    Get PDF
    We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries scattering theory describing the excitations of a free open string propagating in AdS5×S5AdS_5\times S^5, carrying large angular momentum J=J56J=J_{56}, and ending on a maximal giant graviton whose angular momentum is in the same plane. We thus obtain the all-loop Bethe equations describing the spectrum, for JJ finite but large, of the energies of such strings, or equivalently, on the gauge side of the AdS/CFT correspondence, the anomalous dimensions of certain operators built using the epsilon tensor of SU(N). We also give the Bethe equations for strings ending on a probe D7-brane, corresponding to meson-like operators in an N=2\mathcal N=2 gauge theory with fundamental matter.Comment: 30 pages. v2: minor changes and discussion section added, J.Phys.A version

    Quark--anti-quark potential in N=4 SYM

    Get PDF
    We construct a closed system of equations describing the quark--anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark--anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.Comment: 31 pages, 1 figure; v2: minor correcton
    corecore