2,743 research outputs found
4D gravity on a brane from bulk higher-curvature terms
We study a gravity model where a tensionful codimension-one three-brane is
embedded on a bulk with infinite transverse length. We find that 4D gravity is
induced on the brane already at the classical level if we include
higher-curvature (Gauss-Bonnet) terms in the bulk. Consistency conditions
appear to require a negative brane tension as well as a negative coupling for
the higher-curvature terms.Comment: 10 pages, no figures; a minor change in wording (to appear in MPLA
Quantum Gravity and Causal Structures: Second Quantization of Conformal Dirac Algebras
It is postulated that quantum gravity is a sum over causal structures coupled
to matter via scale evolution. Quantized causal structures can be described by
studying simple matrix models where matrices are replaced by an algebra of
quantum mechanical observables. In particular, previous studies constructed
quantum gravity models by quantizing the moduli of Laplace, weight and
defining-function operators on Fefferman-Graham ambient spaces. The algebra of
these operators underlies conformal geometries. We extend those results to
include fermions by taking an osp(1|2) "Dirac square root" of these algebras.
The theory is a simple, Grassmann, two-matrix model. Its quantum action is a
Chern-Simons theory whose differential is a first-quantized, quantum mechanical
BRST operator. The theory is a basic ingredient for building fundamental
theories of physical observables.Comment: 4 pages, LaTe
Fragile to strong crossover coupled to liquid-liquid transition in hydrophobic solutions
Using discrete molecular dynamics simulations we study the relation between
the thermodynamic and diffusive behaviors of a primitive model of aqueous
solutions of hydrophobic solutes consisting of hard spheres in the Jagla
particles solvent, close to the liquid-liquid critical point of the solvent. We
find that the fragile-to-strong dynamic transition in the diffusive behavior is
always coupled to the low-density/high-density liquid transition. Above the
liquid-liquid critical pressure, the diffusivity crossover occurs at the Widom
line, the line along which the thermodynamic response functions show maxima.
Below the liquid-liquid critical pressure, the diffusivity crossover occurs
when the limit of mechanical stability lines are crossed, as indicated by the
hysteresis observed when going from high to low temperature and vice versa.
These findings show that the strong connection between dynamics and
thermodynamics found in bulk water persists in hydrophobic solutions for
concentrations from low to moderate, indicating that experiments measuring the
relaxation time in aqueous solutions represent a viable route for solving the
open questions in the field of supercooled water.Comment: 6 pages, 4 figures. Accepted for publication on Physical Review
Induced gravity on intersecting brane-worlds Part I: Maximally symmetric solutions
We explore models of intersecting brane-worlds with induced gravity terms on
codimension one branes and on their intersection. Maximally symmetric solutions
for the branes and the intersection are found. We find new self-accelerating
solutions. In a 6d spacetime, the solutions realize the see-saw modification of
gravity where the UV scale of the modification to 4d gravity is determined by
6d Planck scale given by eV and the IR scale of the
modification is determined by GeV where
is present-day Hubble scale. We find that it is increasingly difficult to
construct phenomenologically viable models in higher-dimensional spacetime due
to the necessity to have the lower value for the fundamental Planck scale to
realize the late time acceleration. It is found that the system also admits
self-tuning solutions where the tension at the intersection does not change the
geometry of the intersection. The induced gravity terms can avoid the necessity
to compactify the extra dimensions. Finally, we discuss the possibility to have
ordinary matter at the intersection, without introducing any regularisation,
using the induced gravity terms.Comment: 16 pages, some mistakes in the identification of the higher
codimensional singular structure corrected. Main results unchange
Smooth tensionful higher-codimensional brane worlds with bulk and brane form fields
Completely regular tensionful codimension-n brane world solutions are
discussed, where the core of the brane is chosen to be a thin codimension-(n-1)
shell in an infinite volume flat bulk, and an Einstein-Hilbert term localized
on the brane is included (Dvali-Gabadadze-Porrati models). In order to support
such localized sources we enrich the vacuum structure of the brane by the
inclusion of localized form fields. We find that phenomenological constraints
on the size of the internal core seem to impose an upper bound to the brane
tension. Finite transverse-volume smooth solutions are also discussed.Comment: 1+14 pages, 2 figures; section 2.3 improved, typos corrected and
references added. Published versio
Experimental evidence of antiproton reflection by a solid surface
We report here experimental evidence of the reflection of a large fraction of
a beam of low energy antiprotons by an aluminum wall. This derives from the
analysis of a set of annihilations of antiprotons that come to rest in rarefied
helium gas after hitting the end wall of the apparatus. A Monte Carlo
simulation of the antiproton path in aluminum indicates that the observed
reflection occurs primarily via a multiple Rutherford-style scattering on Al
nuclei, at least in the energy range 1-10 keV where the phenomenon is most
visible in the analyzed data. These results contradict the common belief
according to which the interactions between matter and antimatter are dominated
by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure
Mechanical properties of corn gluten meal/ polyvinyl alcohol blends plasticized with glycerol.
- …
