7,407 research outputs found

    Decay Process for Three - Species Reaction - Diffusion System

    Full text link
    We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form A+B+CDA+B+C\to D. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.Comment: 6 pages, 3 figures, Late

    Analysis of the BK2(Kπ)l+lB \to K^*_{2} (\to K \pi) l^+ l^- decay

    Full text link
    In this paper we study the angular distribution of the rare B decay BK2(Kπ)l+lB \to K^*_2 (\to K \pi) l^+ l^-, which is expected to be observed soon. We use the standard effective Hamiltonian approach, and use the form factors that have already been estimated for the corresponding radiative decay BK2γB \to K^*_2 \gamma. The additional form factors that come into play for the dileptonic channel are estimated using the large energy effective theory (LEET), which enables one to relate the additional form factors to the form factors for the radiative mode. Our results provide, just like in the case of the K(892)K^*(892) resonance, an opportunity for a straightforward comparison of the basic theory with experimental results which may be expected in the near future for this channel.Comment: 14 pages, 5 figures; as accepted for Phys. Rev.

    Lepton flavour violation in The Little Higgs model

    Get PDF
    Little Higgs models with T-parity have a new source of lepton flavour violation. In this paper we consider the anomalous magnetic moment of the muon \gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present experimental constraints of \mutoeg is much more useful to constrain the new sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included

    Influence of a Realistic Multiorbital Band Structure on Conducting Domain Walls in Perovskite Ferroelectrics

    Full text link
    Domain wall morphologies in ferroelectrics are believed to be largely shaped by electrostatic forces. Here, we show that for conducting domain walls, the morphology also depends on the details of the charge-carrier band structure. For concreteness, we focus on transition-metal perovskites like BaTiO3_3 and SrTiO3_3. These have a triplet of t2gt_{2g} orbitals attached to the Ti atoms that form the conduction bands when electron doped. We solve a set of coupled equations -- Landau-Ginzburg-Devonshire (LGD) equations for the polarization, tight-binding Schr\"odinger equations for the electron bands, and Gauss' law for the electric potential -- to obtain polarization and electron density profiles as a function of electron density. We find that at low electron densities, the electron gas is pinned to the surfaces of the ferroelectric by a Kittel-like domain structure. As the electron density increases, the domain wall evolves smoothly through a zigzag head-to-head structure, eventually becoming a flat head-to-head domain wall at high density. We find that the Kittel-like morphology is protected by orbital asymmetry at low electron densities, while at large electron densities the high density of states of the multiorbital band structure provides effective screening of depolarizing fields and flattens the domain wall relative to single-orbital models. Finally, we show that in the zigzag phase, the electron gas develops tails that extend away from the domain wall, in contrast to na\"{i}ve expectations.Comment: 17 pages, 13 figure

    Nontrivial Exponent for Simple Diffusion

    Full text link
    The diffusion equation \partial_t\phi = \nabla^2\phi is considered, with initial condition \phi( _x_ ,0) a gaussian random variable with zero mean. Using a simple approximate theory we show that the probability p_n(t_1,t_2) that \phi( _x_ ,t) [for a given space point _x_ ] changes sign n times between t_1 and t_2 has the asymptotic form p_n(t_1,t_2) \sim [\ln(t_2/t_1)]^n(t_1/t_2)^{-\theta}. The exponent \theta has predicted values 0.1203, 0.1862, 0.2358 in dimensions d=1,2,3, in remarkably good agreement with simulation results.Comment: Minor typos corrected, affecting table of exponents. 4 pages, REVTEX, 1 eps figure. Uses epsf.sty and multicol.st

    Persistence in systems with conserved order parameter

    Full text link
    We consider the low-temperature coarsening dynamics of a one-dimensional Ising ferromagnet with conserved Kawasaki-like dynamics in the domain representation. Domains diffuse with size-dependent diffusion constant, D(l)lγD(l) \propto l^\gamma with γ=1\gamma = -1. We generalize this model to arbitrary γ\gamma, and derive an expression for the domain density, N(t)tϕN(t) \sim t^{-\phi} with ϕ=1/(2γ)\phi=1/(2-\gamma), using a scaling argument. We also investigate numerically the persistence exponent θ\theta characterizing the power-law decay of the number, Np(t)N_p(t), of persistent (unflipped) spins at time tt, and find Np(t)tθN_{p}(t)\sim t^{-\theta} where θ\theta depends on γ\gamma. We show how the results for ϕ\phi and θ\theta are related to similar calculations in diffusion-limited cluster-cluster aggregation (DLCA) where clusters with size-dependent diffusion constant diffuse through an immobile `empty' phase and aggregate irreversibly on impact. Simulations show that, while ϕ\phi is the same in both models, θ\theta is different except for γ=0\gamma=0. We also investigate models that interpolate between symmetric domain diffusion and DLCA.Comment: 9 pages, minor revision

    Renormalization Group Study of the A+B->0 Diffusion-Limited Reaction

    Full text link
    The A+B0A + B\to 0 diffusion-limited reaction, with equal initial densities a(0)=b(0)=n0a(0) = b(0) = n_0, is studied by means of a field-theoretic renormalization group formulation of the problem. For dimension d>2d > 2 an effective theory is derived, from which the density and correlation functions can be calculated. We find the density decays in time as a,b \sim C\sqrt{\D}(Dt)^{-d/4} for d<4d < 4, with \D = n_0-C^\prime n_0^{d/2} + \dots, where CC is a universal constant, and CC^\prime is non-universal. The calculation is extended to the case of unequal diffusion constants DADBD_A \neq D_B, resulting in a new amplitude but the same exponent. For d2d \le 2 a controlled calculation is not possible, but a heuristic argument is presented that the results above give at least the leading term in an ϵ=2d\epsilon = 2-d expansion. Finally, we address reaction zones formed in the steady-state by opposing currents of AA and BB particles, and derive scaling properties.Comment: 17 pages, REVTeX, 13 compressed figures, included with epsf. Eq. (6.12) corrected, and a moderate rewriting of the introduction. Accepted for publication in J. Stat. Phy

    Bogoliubov-Cerenkov radiation in a Bose-Einstein condensate flowing against an obstacle

    Full text link
    We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic velocity against an obstacle. The experimental density profiles observed at JILA are reproduced by a numerical integration of the Gross-Pitaevskii equation and then interpreted in terms of Cerenkov emission of Bogoliubov excitations by the defect. The phonon and the single-particle regions of the Bogoliubov spectrum are respectively responsible for a conical wavefront and a fan-shaped series of precursors
    corecore