9,360 research outputs found

    Modeling the physical properties in the ISM of the low-metallicity galaxy NGC4214

    Full text link
    We present a model for the interstellar medium of NGC4214 with the objective to probe the physical conditions in the two main star-forming regions and their connection with the star formation activity of the galaxy. We used the spectral synthesis code Cloudy to model an HII region and the associated photodissociation region (PDR) to reproduce the emission of mid- and far-infrared fine-structure cooling lines from the Spitzer and Herschel space telescopes for these two regions. Input parameters of the model, such as elemental abundances and star formation history, are guided by earlier studies of the galaxy, and we investigated the effect of the mode in which star formation takes place (bursty or continuous) on the line emission. Furthermore, we tested the effect of adding pressure support with magnetic fields and turbulence on the line predictions. We find that this model can satisfactorily predict (within a factor of ~2) all observed lines that originate from the ionized medium ([SIV] 10.5um, [NeIII] 15.6um, [SIII] 18.7um, [SIII] 33.5um, and [OIII] 88um), with the exception of [NeII] 12.8um and [NII] 122um, which may arise from a lower ionization medium. In the PDR, the [OI] 63um, [OI] 145um, and [CII] 157um lines are matched within a factor of ~5 and work better when weak pressure support is added to the thermal pressure or when the PDR clouds are placed farther away from the HII regions and have covering factors lower than unity. Our models of the HII region agree with different evolutionary stages found in previous studies, with a more evolved, diffuse central region, and a younger, more compact southern region. However, the local PDR conditions are averaged out on the 175 pc scales that we probe and do not reflect differences observed in the star formation properties of the two regions.Comment: accepted for publication in A&

    Unsolved problems in the lowermost mantle

    Get PDF
    Many characteristics of D '' layer may be attributed to the recently discovered MgSiO3 post-perovskite phase without chemical heterogeneities. They include a sharp discontinuity at the top of D '', regional variation in seismic anisotropy, and a steep Clapeyron slope. However, some features remain unexplained. The seismically inferred velocity jump is too large in comparison to first principles calculations, and the sharpness of the discontinuity may require a chemical boundary. Chemical heterogeneity may play an important role in addition to the phase transformation from perovskite to post-perovskite. Phase transformation and chemical heterogeneity and the attendant changes in physical properties, such as rheology and thermal conductivity, are likely to play competing roles in defining the dynamical stability of the D '' layer. Revealing the relative roles between phase transition and chemical anomalies is an outstanding challenge in the study of the role of D '' in thermal-chemical evolution of the Earth

    In or out? Spatial scale and enactment in narratives of native and nonnative signing deaf children acquiring British Sign Language

    Get PDF
    In this study we investigate the use of spatial scale and enactment (via constructed action, or CA) in British Sign Language (BSL) narratives of deaf native and nonnative signing children aged eight to ten. We find that the two types of prototypically aligned uses of spatial scale and enactment as described in the sign language literature (i.e. use of character scale with CA, and use of observer scale without CA) occur in both the native and nonnative signing children. We find that observer scale with CA is used by the non-native signing children but not the native signing children, and the opposite pattern with character scale without CA. These findings suggest that cognitive abilities such as perspective taking and the use of spatial scale should be considered along with linguistic abilities when looking at age of acquisition effects

    Rethinking constructed action

    Get PDF
    We aim to demonstrate the importance of defining linguistic phenomena by using constructed action or CA (i.e. a stretch of discourse that represents one role or combination of roles depicting actions, utterances, thought, attitudes and/or feelings of one or more referents) as an example. The problem is that different assumptions about CA have led to some apparent contradictions about the nature of this phenomenon. Based on observations and analyses of the British Sign Language narrative data, we outline criteria and recommendations for defining and analysing CA. We show that, in carefully defining the phenomenon in question and providing criteria for its identification, applying these criteria to usage data leads to emergence of particular types of Constructed Action. We also show how identifying these types can help resolve some of the apparent contradictions in the literature

    Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    Full text link
    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma=1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts

    Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B

    Full text link
    (Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor dwarf galaxies. The low dust abundance enhances the penetration of UV photons into the interstellar medium (ISM), resulting in a relatively larger filling factor of the ionized gas. Furthermore, there is likely a hidden molecular gas reservoir probed by the [CII]157um line. We present Herschel/PACS maps in several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A images were used as complementary data to investigate the effect of dust extinction. Observations were interpreted with photoionization models to infer the gas conditions and estimate the ionized gas contribution to the [CII] emission. Photodissociation regions (PDRs) are probed through polycyclic aromatic hydrocarbons (PAHs). We first study the distribution and properties of the ionized gas. We then constrain the origin of [CII]157um by comparing to tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by extended emission from the high-excitation diffuse ionized gas; it is the brightest far-infrared line, ~4 times brighter than [CII]. The extent of the [OIII] emission suggests that the medium is rather fragmented, allowing far-UV photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing [CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the stellar cluster for which as much as 15% could arise in the ionized gas. We find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII] dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs. The combination of [CII] and [OI] provides a proxy for the total gas cooling in PDRs. Our results suggest that PAH emission describes better the PDR gas heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed inverted line ratio in Sect. 5.
    • …
    corecore