395 research outputs found
Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition
This paper is a comprehensive review of the state-of-knowledge in the field of radiation effects in glasses that are to be used for the immobilization of high-level nuclear waste and plutonium disposition. The current status and issues in the area of radiation damage processes, defect generation, microstructure development, theoretical methods and experimental methods ase reviewed. Questions of fundamental and technological interest that offer opportunities for research are identified
Small-scale EUV features as the drivers of coronal upflows in the quiet Sun
Context. Coronal upflows in the quiet Sun are seen in a wide range of features, including jets and filament eruptions. The in situ measurements from Parker Solar Probe within ≈0.2 au have demonstrated that the solar wind is highly structured, showing abrupt and near-ubiquitous magnetic field reversals (i.e., switchbacks) on different timescales. The source of these structures has been associated with supergranular structures on the solar disc. This raises the question of whether there are additional small coronal features that contribute energy to the corona and produce plasma that potentially feeds into the solar wind. /
Aims. During the Solar Orbiter first science perihelion, high-resolution images of the solar corona were recorded using the Extreme Ultraviolet High Resolution Imager (HRIEUV) from the Extreme Ultraviolet Imager (EUI). The Hinode spacecraft was also observing at the same location providing coronal spectroscopic measurements. Combining the two datasets allows us to determine the cause of the weak upflows observed in the quiet Sun and the associated activity. /
Methods. We used a multi-spacecraft approach to characterise regions of upflows. The upflows were identified in the Fe XII emission line by the Hinode EUV Imaging Spectrometer (EIS). We then used imaging data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) and the High Resolution Imagers (HRI) from EUI on board the Solar Orbiter to identify coronal features and magnetic field data from the SDO Helioseismic and Magnetic Imager (HMI). Interface Region Imaging Spectrograph (IRIS) observations were also used to understand the photospheric and chromospheric driving mechanisms. /
Results. We have identified two regions of coronal upflows in the quiet Sun, with respective sizes and lifetimes of (20 Mm2, 20 min) and (180 Mm2, several hours), which are contrasting dynamic events. Both examples show weak flux cancellation, indicating that the source of the upflows and enhancements is related to the magnetic field changes. The first event, a larger upflow region, shows velocities of up to −8.6 km s−1 at the footpoint of a complex loop structure. We observe several distinct extreme ultraviolet (EUV) features including frequent loop brightenings and plasma blobs travelling along closed coronal loops. The second upflow region has velocities of up to −7.2 km s−1. Within it, a complex EUV feature that lasts for about 20 min can be seen. This main feature has several substructures. During its appearance, a clear mini-filament eruption takes place at its location, before the EUV feature disappears. /
Conclusions. Two features, with contrasting properties, show upflows with comparable magnitudes. The first event, a complex loop structure, shares several similarities with active region upflows. The second one, a complex small-scale feature that could not have been well resolved with previous instruments, triggered a cascade of events, including a mini-filament that lead to a measurable upflow. This is remarkable for an EUV feature that many instruments can barely resolve. The complexity of the two events, including small loop brightenings and travelling plasma blobs for the first and EUV small-scale loops and mini-filament for the second one would not have been identifiable as the sources of upflow without an instrument with the spatial resolution of HRIEUV at this distance to the Sun. These results reinforce the importance of the smallest-scale features in the Sun and their potential relevance for and impact on the solar corona and the solar wind
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Beauty photoproduction measured using decays into muons in dijet events in ep collisions at =318 GeV
The photoproduction of beauty quarks in events with two jets and a muon has
been measured with the ZEUS detector at HERA using an integrated luminosity of
110 pb. The fraction of jets containing b quarks was extracted from the
transverse momentum distribution of the muon relative to the closest jet.
Differential cross sections for beauty production as a function of the
transverse momentum and pseudorapidity of the muon, of the associated jet and
of , the fraction of the photon's momentum participating in
the hard process, are compared with MC models and QCD predictions made at
next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September
200
Lipid Metabolites Enhance Secretion Acting on SNARE Microdomains and Altering the Extent and Kinetics of Single Release Events in Bovine Adrenal Chromaffin Cells
Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms
Substrate Profiling of Tobacco Etch Virus Protease Using a Novel Fluorescence-Assisted Whole-Cell Assay
Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases and their substrates
Значение мотивации персонала на предприятии
Основная цель – систематизировать сведения о мотивации персонала и
его значении на предприятии
A genomic catalog of Earth’s microbiomes
The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes
The Gracilis Myocutaneous Free Flap: A Quantitative Analysis of the Fasciocutaneous Blood Supply and Implications for Autologous Breast Reconstruction
BACKGROUND: Mastectomies are one of the most common surgical procedures in women of the developed world. The gracilis myocutaneous flap is favoured by many reconstructive surgeons due to the donor site profile and speed of dissection. The distal component of the longitudinal skin paddle of the gracilis myocutaneous flap is unreliable. This study quantifies the fasciocutaneous vascular territories of the gracilis flap and offers the potential to reconstruct breasts of all sizes. METHODS: Twenty-seven human cadaver dissections were performed and injected using lead oxide into the gracilis vascular pedicles, followed by radiographic studies to identify the muscular and fasciocutaneous perforator patterns. The vascular territories and choke zones were characterized quantitatively using the 'Lymphatic Vessel Analysis Protocol' (LVAP) plug-in for Image J® software. RESULTS: We found a step-wise decrease in the average vessel density from the upper to middle and lower thirds of both the gracilis muscle and the overlying skin paddle with a significantly higher average vessel density in the skin compared to the muscle. The average vessel width was greater in the muscle. Distal to the main pedicle, there were either one (7/27 cases), two (14/27 cases) or three (6/27 cases) minor pedicles. The gracilis angiosome was T-shaped and the maximum cutaneous vascular territory for the main and first minor pedicle was 35 × 19 cm and 34 × 10 cm, respectively. CONCLUSION: Our findings support the concept that small volume breast reconstructions can be performed on suitable patients, based on septocutaneous perforators from the minor pedicle without the need to harvest any muscle, further reducing donor site morbidity. For large reconstructions, if a 'T' or tri-lobed flap with an extended vertical component is needed, it is important to establish if three territories are present. Flap reliability and size may be optimized following computed tomographic angiography and surgical delay
- …