2,678 research outputs found
Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation
FRB 121102, the only repeating fast radio burst (FRB) known to date, was
discovered at 1.4 GHz and shortly after the discovery of its repeating nature,
detected up to 2.4 GHz. Here we present three bursts detected with the 100-m
Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency
structure on broad and narrow frequency scales. Using an autocorrelation
function analysis, we measured a characteristic bandwidth of the small-scale
structure of 6.41.6 MHz, which is consistent with the diffractive
scintillation bandwidth for this line of sight through the Galactic
interstellar medium (ISM) predicted by the NE2001 model. These were the only
detections in a campaign totaling 22 hours in 10 observing epochs spanning five
months. The observed burst detection rate within this observation was
inconsistent with a Poisson process with a constant average occurrence rate;
three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August
20. We therefore observed a change in the rate of detectable bursts during this
observation, and we argue that boosting by diffractive interstellar
scintillations may have played a role in the detectability. Understanding
whether changes in the detection rate of bursts from FRB 121102 observed at
other radio frequencies and epochs are also a product of propagation effects,
such as scintillation boosting by the Galactic ISM or plasma lensing in the
host galaxy, or an intrinsic property of the burst emission will require
further observations.Comment: Accepted to ApJ. Minor typos correcte
The Gamma Ray Pulsar Population
We apply a likelihood analysis to pulsar detections, pulsar upper limits, and
diffuse background measurements from the OSSE and EGRET instruments on the
Compton Gamma Ray Observatory to constrain the luminosity law for gamma-ray
pulsars and some properties of the gamma-ray pulsar population. We find that
the dependence of luminosity on spin period and dipole magnetic field is much
steeper at OSSE than at EGRET energies (50-200 keV and >100 MeV, respectively),
suggesting that different emission mechanisms are responsible for low- and
high-energy gamma-ray emission. Incorporating a spin-down model and assuming a
pulsar spatial distribution, we estimate the fraction of the Galactic gamma-ray
background due to unidentified pulsars and find that pulsars may be an
important component of the OSSE diffuse flux, but are most likely not important
at EGRET energies. Using measurements of the diffuse background flux from these
instruments, we are able to place constraints on the braking index, initial
spin period, and magnetic field of the Galactic pulsar population. We are also
able to constrain the pulsar birthrate to be between 1/(25 yr) and 1/(500 yr).
Our results are based on a large gamma-ray beam, but they do not scale in a
simple way with beam size. With our assumed beam size, the implied gamma-ray
efficiency for the EGRET detections is no more than 20%. We estimate that about
20 of the 169 unidentified EGRET sources are probably gamma-ray pulsars. We use
our model to predict the pulsar population that will be seen by future
gamma-ray instruments and estimate that GLAST will detect roughly 750 gamma-ray
pulsars as steady sources, only 120 of which are currently known radio pulsars.Comment: 32 pages, including figures. submitted to Ap
Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands Protected Area
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Auscavitch, S. R., Deere, M. C., Keller, A. G., Rotjan, R. D., Shank, T. M., & Cordes, E. E. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands Protected Area. Frontiers in Marine Science, 7, (2020): 42, doi:10.3389/fmars.2020.00042.The Phoenix Islands Protected Area, in the central Pacific waters of the Republic of Kiribati, is a model for large marine protected area (MPA) development and maintenance, but baseline records of the protected biodiversity in its largest environment, the deep sea (>200 m), have not yet been determined. In general, the equatorial central Pacific lacks biogeographic perspective on deep-sea benthic communities compared to more well-studied regions of the North and South Pacific Ocean. In 2017, explorations by the NOAA ship Okeanos Explorer and R/V Falkor were among the first to document the diversity and distribution of deep-water benthic megafauna on numerous seamounts, islands, shallow coral reef banks, and atolls in the region. Here, we present baseline deep-sea coral species distribution and community assembly patterns within the Scleractinia, Octocorallia, Antipatharia, and Zoantharia with respect to different seafloor features and abiotic environmental variables across bathyal depths (200–2500 m). Remotely operated vehicle (ROV) transects were performed on 17 features throughout the Phoenix Islands and Tokelau Ridge Seamounts resulting in the observation of 12,828 deep-water corals and 167 identifiable morphospecies. Anthozoan assemblages were largely octocoral-dominated consisting of 78% of all observations with seamounts having a greater number of observed morphospecies compared to other feature types. Overlying water masses were observed to have significant effects on community assembly across bathyal depths. Revised species inventories further suggest that the protected area it is an area of biogeographic overlap for Pacific deep-water corals, containing species observed across bathyal provinces in the North Pacific, Southwest Pacific, and Western Pacific. These results underscore significant geographic and environmental complexity associated with deep-sea coral communities that remain in under-characterized in the equatorial central Pacific, but also highlight the additional efforts that need to be brought forth to effectively establish baseline ecological metrics in data deficient bathyal provinces.Funding for this work was provided by NOAA Office of Ocean Exploration and Research (Grant No. NA17OAR0110083) to RR, EC, TS, and David Gruber
A sample of low energy bursts from FRB 121102
We present 41 bursts from the first repeating fast radio burst discovered
(FRB 121102). A deep search has allowed us to probe unprecedentedly low burst
energies during two consecutive observations (separated by one day) using the
Arecibo telescope at 1.4 GHz. The bursts are generally detected in less than a
third of the 580-MHz observing bandwidth, demonstrating that narrow-band FRB
signals may be more common than previously thought. We show that the bursts are
likely faint versions of previously reported multi-component bursts. There is a
striking lack of bursts detected below 1.35 GHz and simultaneous VLA
observations at 3 GHz did not detect any of the 41 bursts, but did detect one
that was not seen with Arecibo, suggesting preferred radio emission frequencies
that vary with epoch. A power law approximation of the cumulative distribution
of burst energies yields an index that is much steeper than the
previously reported value of . The discrepancy may be evidence for a
more complex energy distribution. We place constraints on the possibility that
the associated persistent radio source is generated by the emission of many
faint bursts ( ms). We do not see a connection between burst
fluence and wait time. The distribution of wait times follows a log-normal
distribution centered around s; however, some bursts have wait times
below 1 s and as short as 26 ms, which is consistent with previous reports of a
bimodal distribution. We caution against exclusively integrating over the full
observing band during FRB searches, because this can lower signal-to-noise.Comment: Accepted version. 16 pages, 7 figures, 1 tabl
An analysis of the timing irregularities for 366 pulsars
We provide an analysis of timing irregularities observed for 366 pulsars.
Observations were obtained using the 76-m Lovell radio telescope at the Jodrell
Bank Observatory over the past 36 years. These data sets have allowed us to
carry out the first large-scale analysis of pulsar timing noise over time
scales of > 10yr, with multiple observing frequencies and for a large sample of
pulsars. Our sample includes both normal and recycled pulsars. The timing
residuals for the pulsars with the smallest characteristic ages are shown to be
dominated by the recovery from glitch events, whereas the timing irregularities
seen for older pulsars are quasi-periodic. We emphasise that previous models
that explained timing residuals as a low-frequency noise process are not
consistent with observation.Comment: Accepted by MNRAS. High resolution images available from the article
on AD
Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields
We show how to approximate Dirac dynamics for electronic initial states by
semi- and non-relativistic dynamics. To leading order, these are generated by
the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is
related to and , respectively. Higher-order
corrections can in principle be computed to any order in the small parameter
v/c which is the ratio of typical speeds to the speed of light. Our results
imply the dynamics for electronic and positronic states decouple to any order
in v/c << 1.
To decide whether to get semi- or non-relativistic effective dynamics, one
needs to choose a scaling for the kinetic momentum operator. Then the effective
dynamics are derived using space-adiabatic perturbation theory by Panati et. al
with the novel input of a magnetic pseudodifferential calculus adapted to
either the semi- or non-relativistic scaling.Comment: 42 page
Correlation of Fermi photons with high-frequency radio giant pulses from the Crab pulsar
To constrain the giant pulse (GP) emission mechanism and test the model of
Lyutikov (2007) for GP emission, we have carried out a campaign of simultaneous
observations of the Crab pulsar at gamma-ray (Fermi) and radio (Green Bank
Telescope) wavelengths. Over 10 hours of simultaneous observations we obtained
a sample of 2.1x10^4 giant pulses, observed at a radio frequency of 9 GHz, and
77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs
came from the interpulse (IP) phase window. We found no change in the GP
generation rate within 10-120 s windows at lags of up to +-40 min of observed
gamma-ray photons. The 95% upper limit for a gamma-ray flux enhancement in
pulsed emission phase window around all GPs is 4 times the average pulsed
gamma-ray flux from the Crab. For the subset of IP GPs, the enhancement upper
limit, within the IP emission window, is 12 times the average pulsed gamma-ray
flux. These results suggest that GPs, at least high-frequency IP GPs, are due
to changes in coherence of radio emission rather than an overall increase in
the magnetospheric particle density.Comment: 9 pages, 6 figures; to appear in The Astrophysical Journal, February
201
The Radial Extent and Warp of the Ionized Galactic Disk. I. A VLBA Survey of Extragalactic Sources Toward the Anticenter
We report multifrequency Very Long Baseline Array observations of twelve
active galactic nuclei seen toward the Galactic anticenter. All of the sources
are at |b| < 10 degrees and seven have |b| < 0.5 degrees. Our VLBA observations
can detect an enhancement in the angular broadening of these sources due to an
extended H II disk, if the orientation of the H II disk in the outer Galaxy is
similar to that of the H I disk. Such an extended H II disk is suggested by the
C IV absorption in a quasar's spectrum, the appearance of H I disks of nearby
spiral galaxies, and models of Ly-alpha cloud absorbers and the Galactic
fountain. We detect eleven of the twelve sources at one or more frequencies;
nine of the sources are compact and suitable for an angular broadening
analysis. A preliminary analysis of the observed angular diameters suggests
that the H II disk does not display considerable warping or flaring and does
not extend to large Galactocentric distances (R >~ 100 kpc). A companion paper
(Lazio & Cordes 1997) combines these observations with those in the literature
and presents a more comprehensive analysis.Comment: 19 pages, LaTeX2e with AASTeX macro aaspp4, accepted for publication
in ApJS, Vol. 115, 1998 April; Figures 1, 3, and 4 included, for figures of
individual sources see
http://astrosun.tn.cornell.edu/students/lazio/Anticenter/anticenterI.htm
- …