43 research outputs found
Targeting lamb survival in commercial flocks:inspiring and effecting change
Background: The neonatal period is acknowledged to be the riskiest phase of rearing for the loss of lambs with adaption to the extrautero world, an appropriate environment, successful passive transfer, overcoming the threat of pathogen challenge and a strong maternal-neonatal interaction essential for success. Unfortunately, despite significant research and focus on this phase, there haven't been significant improvements in lamb survival in recent years. Aim of the article: This article considers the obstacles to implementing change on sheep farms and reviews the evidence base for recommendations to be used on farm.</p
Immune-mediated haemolytic anaemia secondary to haemotrophic mycoplasma infection in a pet ewe
No abstract available
Intrinsic calf factors associated with the behavior of healthy pre-weaned group-housed dairy-bred calves
Technology-derived behaviors are researched for disease detection in artificially-reared calves. Whilst existing studies demonstrate differences in behaviors between healthy and diseased calves, intrinsic calf factors (e.g., sex and birthweight) that may affect these behaviors have received little systematic study. This study aimed to understand the impact of a range of calf factors on milk feeding and activity variables of dairy-bred calves. Calves were group-housed from ~7 days to 39 days of age. Seven liters of milk replacer was available daily from an automatic milk feeder, which recorded feeding behaviors and live-weight. Calves were health scored daily and a tri-axial accelerometer used to record activity variables. Healthy calves were selected by excluding data collected 3 days either side of a poor health score or a treatment event. Thirty-one calves with 10 days each were analyzed. Mixed models were used to identify which of live-weight, age, sex, season of birth, age of inclusion into the group, dam parity, birthweight, and sire breed type (beef or dairy), had a significant influence on milk feeding and activity variables. Heavier calves visited the milk machine more frequently for shorter visits, drank faster and were more likely to drink their daily milk allowance than lighter calves. Older calves had a shorter mean standing bout length and were less active than younger calves. Calves born in summer had a longer daily lying time, performed more lying and standing bouts/day and had shorter mean standing bouts than those born in autumn or winter. Male calves had a longer mean lying bout length, drank more slowly and were less likely to consume their daily milk allowance than their female counterparts. Calves that were born heavier had fewer lying and standing bouts each day, a longer mean standing bout length and drank less milk per visit. Beef-sired calves had a longer mean lying bout length and drank more slowly than their dairy sired counterparts. Intrinsic calf factors influence different healthy calf behaviors in different ways. These factors must be considered in the design of research studies and the field application of behavior-based disease detection tools in artificially reared calves
Making waves : wastewater-based epidemiology for COVID-19 - approaches and challenges for surveillance and prediction
The presence of SARS-CoV-2 in the feces of infected patients and wastewater has drawn attention, not only to the possibility of fecal-oral transmission but also to the use of wastewater as an epidemiological tool. The COVID-19 pandemic has highlighted problems in evaluating the epidemiological scope of the disease using classical surveillance approaches, due to a lack of diagnostic capacity, and their application to only a small proportion of the population. As in previous pandemics, statistics, particularly the proportion of the population infected, are believed to be widely underestimated. Furthermore, analysis of only clinical samples cannot predict outbreaks in a timely manner or easily capture asymptomatic carriers. Threfore, community-scale surveillance, including wastewater-based epidemiology, can bridge the broader community and the clinic, becoming a valuable indirect epidemiological prediction tool for SARS-CoV-2 and other pandemic viruses. This article summarizes current knowledge and discusses the critical factors for implementing wastewater-based epidemiology of COVID-19
Effect of an immune challenge and two feed supplements on broiler chicken individual breast muscle protein synthesis rate
Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken's growth. Despite its importance, research on broiler chicken muscle protein dynamics has mostly been limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of citrus and cucumber extracts on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. Twenty-one day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analysed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein synthesis which could be essential for improving the efficiency of broiler chicken meat production. SIGNIFICANCE: The present study constitutes the first dynamic proteomics study conducted in a farm animal species which has characterized FSR in a large number of proteins, establishing a precedent for biomarker discovery and assessment of health and growth status. Moreover, it has been evidenced that the decrease in broiler chicken breast muscle protein following an immune challenge is a coordinated event which seems to be the main cause of the decreased growth observed in these animals.</p