4,292 research outputs found

    On the Role of Minor Galaxy Mergers in the Formation of Active Galactic Nuclei

    Full text link
    The large scale (~ 100 kpc) environments of Seyfert galaxies are not significantly different from those of non-Seyfert galaxies. In the context of the interaction model of the formation of active galactic nuclei (AGN), it has been proposed that AGN form via "minor mergers" of large disk galaxies with smaller companions. We test this hypothesis by comparing the nuclear spectra of 105 bright nearby galaxies with measurements of their R or r band morphological asymmetries at three successive radii. We find no significant differences in these asymmetries between the 13 Seyfert galaxies in the sample and galaxies having other nuclear spectral types (absorption, H II-region like, LINER), nor is there strong qualitative evidence that such mergers have occured among any of the Seyferts or LINERs. Thus either any minor mergers began > 1 Gyr ago and are essentially complete, or they did not occur at all, and AGN form independently of any type of interaction. Support for the latter interpretation is provided by the growing evidence that supermassive black holes exist in the cores of most elliptical and early-type spiral galaxies, which in turn suggests that nuclear activity represents a normal phase in the evolution of the bulges of massive galaxies. Galaxy mergers may increase the luminosity of Seyfert nuclei to the level of QSOs, which could explain why the latter objects appear to be found in rich environments and in interacting systems.Comment: 13 pages, 2 figures, to appear in Astrophysical Journal Letter

    Impact-induced acceleration by obstacles

    Full text link
    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls \emph{faster} than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.Comment: small changes and corrections, added reference

    Hubble Space Telescope NICMOS Imaging of W3 IRS 5: A Trapezium in the Making?

    Full text link
    We present Hubble Space Telescope NICMOS imaging of W3 IRS 5, a binary high-mass protostar. In addition to the two protostars, NICMOS images taken in the F222M and F160W filters show three new 2.22 micron sources with very red colors; these sources fall within a region 5600 AU in diameter, and are coincident with a 100 solar mass dense molecular clump. Two additional point sources are found within 0.4'' (800 AU) of one of the high-mass protostars; these may be stellar companions or unresolved emission knots from an outflow. We propose that these sources constitute a nascent Trapezium system in the center of the W3 IRS 5 cluster containing as many as five proto OB stars. This would be the first identification of a Trapezium still deeply embedded in its natal gas.Comment: accepted to ApJ letter

    Semi-classical limit and minimum decoherence in the Conditional Probability Interpretation of Quantum Mechanics

    Full text link
    The Conditional Probability Interpretation of Quantum Mechanics replaces the abstract notion of time used in standard Quantum Mechanics by the time that can be read off from a physical clock. The use of physical clocks leads to apparent non-unitary and decoherence. Here we show that a close approximation to standard Quantum Mechanics can be recovered from conditional Quantum Mechanics for semi-classical clocks, and we use these clocks to compute the minimum decoherence predicted by the Conditional Probability Interpretation.Comment: 8 pages, references adde

    The Nearby and Extremely Metal-Poor Galaxy CGCG 269-049

    Full text link
    We present Hubble Space Telescope (HST) and Spitzer Space Telescope images and photometry of the extremely metal-poor (Z = 0.03 Z_sol) blue dwarf galaxy CGCG 269-049. The HST images reveal a large population of red giant and asymptotic giant branch stars, ruling out the possibility that the galaxy has recently formed. From the magnitude of the tip of the red giant branch, we measure a distance to CGCG 269-049 of only 4.9 +/- 0.4 Mpc. The spectral energy distribution of the galaxy between ~3.6 - 70 microns is also best fitted by emission from predominantly ~10 Gyr old stars, with a component of thermal dust emission having a temperature of 52 +/- 10 K. The HST and Spitzer photometry indicate that more than 60% of CGCG 269-049's stellar mass consists of stars ~10 Gyr old, similar to other local blue dwarf galaxies. Our HST H-alpha image shows no evidence of a supernova-driven outflow that could be removing metals from the galaxy, nor do we find evidence that such outflows occurred in the past. Taken together with CGCG 269-049's large ratio of neutral hydrogen mass to stellar mass (~10), these results are consistent with recent simulations in which the metal deficiency of local dwarf galaxies results mainly from inefficient star formation, rather than youth or the escape of supernova ejecta.Comment: 35 Pages, 7 Figures, accepted for publication in ApJ; new version corrects errors in Table 1, Figure 3, and related calculations in tex

    Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures.

    Get PDF
    An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE

    Hubble Space Telescope Imaging of the Ultracompact Blue Dwarf Galaxy HS 0822+3542: An Assembling Galaxy in a Local Void?

    Full text link
    We present deep U, narrow-V, and I-band images of the ultracompact blue dwarf galaxy HS 0822+3542, obtained with the Advanced Camera for Surveys / High Resolution Channel of the Hubble Space Telescope. This object is extremely metal-poor (12 + log(O/H) = 7.45) and resides in a nearby void. The images resolve it into two physically separate components that were previously described as star clusters in a single galaxy. The primary component is only \~100 pc in maximum extent, and consists of starburst region surrounded by a ring-like structure of relatively redder stars. The secondary component is ~50 pc in size and lies at a projected distance of ~80 pc away from the primary, and is also actively star-forming. We estimate masses ~10^7 M(sol) and ~10^6 M(sol) for the two components, based on their luminosities, with an associated dynamical timescale for the system of a few Myr. This timescale and the structure of the components suggests that a collision between them triggered their starbursts. The spectral energy distributions of both components can be fitted by the combination of recent (few Myr old) starburst and an evolved (several Gyr old) underlying stellar population, similar to larger blue compact dwarf galaxies. This indicates that despite its metal deficiency the object is not forming its first generation of stars. However, the small sizes and masses of the two components suggests that HS 0822+3542 represents a dwarf galaxy in the process of assembling from clumps of stars intermediate in size between globular clusters and objects previously classified as galaxies. Its relatively high ratio of neutral gas mass to stellar mass (~1) and high specific star formation rate, log(SFR/M(sol) = -9.2, suggests that it is still converting much of its gas to stars.Comment: 11 pages, 2 figures, accepted for publication in Astrophysical Journal Letter

    Ethyl glucuronide as a long-term alcohol biomarker in fingernail and hair

    Get PDF
    Aims: This work aimed to assess the performance of hair and fingernail ethyl glucuronide (EtG) measurement for use as a biomarker of alcohol consumption in persons with known drinking history across a range of drinking behaviours. Methods: EtG concentrations were assessed from the hair and fingernails of 50 study participants. Alcohol consumption of the previous 90 days was assessed by participant interview using the alcohol time-line follow-back (TLFB) method. EtG concentration was determined using LC/MS-MS using a method which was validated and accredited to ISO/IEC 17025 standards. Results: There was significant correlation between alcohol consumption and EtG concentrations found in hair and fingernail samples across the study group (n=50). From participants testing positive for EtG (male n=14, female n=13) no significant difference was found between male and female EtG levels in either hair or fingernails. Across all participants there was no significant difference in hair or fingernail EtG concentration between male (n=23) and females (n=27). Conclusions: Our results support the use of EtG to indicate alcohol consumption over the previous 90 days, or approximately 3 months as is the normal practice in hair analysis. The results confirm that fingernails can be a useful alternative matrix where hair samples are not available

    Combinatorial optimization applied to VLBI scheduling

    Get PDF
    Due to the advent of powerful solvers, today linear programming has seen many applications in production and routing. In this publication, we present mixed-integer linear programming as applied to scheduling geodetic very-long-baseline interferometry (VLBI) observations. The approach uses combinatorial optimization and formulates the scheduling task as a mixed-integer linear program. Within this new method, the schedule is considered as an entity containing all possible observations of an observing session at the same time, leading to a global optimum. In our example, the optimum is found by maximizing the sky coverage score. The sky coverage score is computed by a hierarchical partitioning of the local sky above each telescope into a number of cells. Each cell including at least one observation adds a certain gain to the score. The method is computationally expensive and this publication may be ahead of its time for large networks and large numbers of VLBI observations. However, considering that developments of solvers for combinatorial optimization are progressing rapidly and that computers increase in performance, the usefulness of this approach may come up again in some distant future. Nevertheless, readers may be prompted to look into these optimization methods already today seeing that they are available also in the geodetic literature. The validity of the concept and the applicability of the logic are demonstrated by evaluating test schedules for five 1-h, single-baseline Intensive VLBI sessions. Compared to schedules that were produced with the scheduling software sked, the number of observations per session is increased on average by three observations and the simulated precision of UT1-UTC is improved in four out of five cases (6μs average improvement in quadrature). Moreover, a simplified and thus much faster version of the mixed-integer linear program has been developed for modern VLBI Global Observing System telescopes

    Surface Brightness Profiles of Composite Images of Compact Galaxies at z~4-6 in the HUDF

    Full text link
    The Hubble Ultra Deep Field (HUDF) contains a significant number of B, V and i'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at z~4-6. These galaxies are too faint individually to accurately measure their radial surface brightness profiles. Their average light profiles are potentially of great interest, since they may contain clues to the time since the onset of significant galaxy assembly. We separately co-add V, i' and z'-band HUDF images of sets of z~4,5 and 6 objects, pre-selected to have nearly identical compact sizes and the roundest shapes. From these stacked images, we are able to study the averaged radial structure of these objects at much higher signal-to-noise ratio than possible for an individual faint object. Here we explore the reliability and usefulness of a stacking technique of compact objects at z~4-6 in the HUDF. Our results are: (1) image stacking provides reliable and reproducible average surface brightness profiles; (2) the shape of the average surface brightness profiles show that even the faintest z~4-6 objects are resolved; and (3) if late-type galaxies dominate the population of galaxies at z~4-6, as previous HST studies have shown, then limits to dynamical age estimates for these galaxies from their profile shapes are comparable with the SED ages obtained from the broadband colors. We also present accurate measurements of the sky-background in the HUDF and its associated 1-sigma uncertainties.Comment: 10 pages, 9 figures, 2 tables, emulateapj; Accepted for publication in The Astronomical Journa
    corecore