252 research outputs found

    Epithelial factors produced during the remodelling of the human airway epithelium

    Get PDF

    In situ observation of stress relaxation in epitaxial graphene

    Get PDF
    Upon cooling, branched line defects develop in epitaxial graphene grown at high temperature on Pt(111) and Ir(111). Using atomically resolved scanning tunneling microscopy we demonstrate that these defects are wrinkles in the graphene layer, i.e. stripes of partially delaminated graphene. With low energy electron microscopy (LEEM) we investigate the wrinkling phenomenon in situ. Upon temperature cycling we observe hysteresis in the appearance and disappearance of the wrinkles. Simultaneously with wrinkle formation a change in bright field imaging intensity of adjacent areas and a shift in the moire spot positions for micro diffraction of such areas takes place. The stress relieved by wrinkle formation results from the mismatch in thermal expansion coefficients of graphene and the substrate. A simple one-dimensional model taking into account the energies related to strain, delamination and bending of graphene is in qualitative agreement with our observations.Comment: Supplementary information: S1: Photo electron emission microscopy and LEEM measurements of rotational domains, STM data of a delaminated bulge around a dislocation. S2: Movie with increasing brightness upon wrinkle formation as in figure 4. v2: Major revision including new experimental dat

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices

    Régénération de l’épithélium des voies aériennes

    Get PDF
    RésuméIntroductionLa régénération de l’épithélium respiratoire est un phénomène complexe qui peut, en conditions pathologiques (asthme, BPCO, mucoviscidose), aboutir à un remodelage chronique, altérant la fonctionnalité de l’épithélium.État des connaissancesLe développement de modèles d’étude in vivo et in vitro a permis d’étudier les mécanismes du remodelage bronchique. Les principaux acteurs de ce remodelage ont ainsi été mis en évidence : composants de la matrice extracellulaire, protéases, facteurs de croissance, cytokines. Les cellules progénitrices/souches de l’épithélium des voies aériennes ont également été étudiées dans ces modèles, leur identification restant toutefois difficile.ConclusionL’identification et la caractérisation des cellules souches/progénitrices de l’épithélium des voies aériennes ainsi que la compréhension complète des mécanismes de la régénération devraient permettre l’élaboration de nouvelles stratégies thérapeutiques favorisant la reconstitution épithéliale.SummaryIntroductionEpithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis.BackgroundThe development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult.ConclusionIdentification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution

    Cones, pringles, and grain boundary landscapes in graphene topology

    Full text link
    A polycrystalline graphene consists of perfect domains tilted at angle {\alpha} to each other and separated by the grain boundaries (GB). These nearly one-dimensional regions consist in turn of elementary topological defects, 5-pentagons and 7-heptagons, often paired up into 5-7 dislocations. Energy G({\alpha}) of GB computed for all range 0<={\alpha}<=Pi/3, shows a slightly asymmetric behavior, reaching ~5 eV/nm in the middle, where the 5's and 7's qualitatively reorganize in transition from nearly armchair to zigzag interfaces. Analysis shows that 2-dimensional nature permits the off-plane relaxation, unavailable in 3-dimensional materials, qualitatively reducing the energy of defects on one hand while forming stable 3D-landsapes on the other. Interestingly, while the GB display small off-plane elevation, the random distributions of 5's and 7's create roughness which scales inversely with defect concentration, h ~ n^(-1/2)Comment: 9 pages, 4 figure

    Evidence of silicene in honeycomb structures of silicon on Ag(111)

    Full text link
    In the search for evidence of silicene, a two-dimensional honeycomb lattice of silicon, it is important to obtain a complete picture for the evolution of Si structures on Ag(111), which is believed to be the most suitable substrate for growth of silicene so far. In this work we report the finding and evolution of several monolayer superstructures of silicon on Ag(111) depending on the coverage and temperature. Combined with first-principles calculations, the detailed structures of these phases have been illuminated. These structure were found to share common building blocks of silicon rings, and they evolve from a fragment of silicene to a complete monolayer silicene and multilayer silicene. Our results elucidate how silicene formes on Ag(111) surface and provide methods to synthesize high-quality and large-scale silicene.Comment: 6 pages, 4 figure

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material
    • …
    corecore