388 research outputs found
Sub-100 attoseconds optics-to-microwave synchronization
We use two fiber-based femtosecond frequency combs and a low-noise carrier
suppression phase detection system to characterize the optical to microwave
synchronization achievable with such frequency divider systems. By applying
specific noise reduction strategies, a residual phase noise as low as -120
dBc/Hz at 1 Hz offset frequency from a 11.55 GHz carrier is measured. The
fractional frequency instability from a single optical-to-frequency divider is
1.1E-16 at 1 s averaging down to below 2E-19 after only 1000 s. The
corresponding rms time deviation is lower than 100 attoseconds up to 1000 s
averaging duration.Comment: 4 pages, 3 figure
Tapered-amplified AR-coated laser diodes for Potassium and Rubidium atomic-physics experiments
We present a system of room-temperature extended-cavity grating-diode lasers
(ECDL) for production of light in the range 760-790nm. The extension of the
tuning range towards the blue is permitted by the weak feedback in the cavity:
the diodes are anti-reflection coated, and the grating has just 10%
reflectance. The light is then amplified using semiconductor tapered amplifiers
to give more than 400mW of power. The outputs are shown to be suitable for
atomic physics experiments with potassium (767nm), rubidium (780nm) or both, of
particular relevance to doubly-degenerate boson-fermion mixtures
Ultrastable lasers based on vibration insensitive cavities
We present two ultra-stable lasers based on two vibration insensitive cavity
designs, one with vertical optical axis geometry, the other horizontal.
Ultra-stable cavities are constructed with fused silica mirror substrates,
shown to decrease the thermal noise limit, in order to improve the frequency
stability over previous designs. Vibration sensitivity components measured are
equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which
shows significant improvement over previous studies. We have tested the very
low dependence on the position of the cavity support points, in order to
establish that our designs eliminate the need for fine tuning to achieve
extremely low vibration sensitivity. Relative frequency measurements show that
at least one of the stabilized lasers has a stability better than 5.6e-16 at 1
second, which is the best result obtained for this length of cavity.Comment: 8 pages 12 figure
Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock
We demonstrate the use of a fiber-based femtosecond laser locked onto an
ultra-stable optical cavity to generate a low-noise microwave reference signal.
Comparison with both a liquid Helium cryogenic sapphire oscillator (CSO) and a
Ti:Sapphire-based optical frequency comb system exhibit a stability about
between 1 s and 10 s. The microwave signal from the fiber
system is used to perform Ramsey spectroscopy in a state-of-the-art Cesium
fountain clock. The resulting clock system is compared to the CSO and exhibits
a stability of . Our continuously operated
fiber-based system therefore demonstrates its potential to replace the CSO for
atomic clocks with high stability in both the optical and microwave domain,
most particularly for operational primary frequency standards.Comment: 3 pages, 3 figure
Experimenting an optical second with strontium lattice clocks
Progress in realizing the SI second had multiple technological impacts and
enabled to further constraint theoretical models in fundamental physics.
Caesium microwave fountains, realizing best the second according to its current
definition with a relative uncertainty of 2-4x10^(-16), have already been
superseded by atomic clocks referenced to an optical transition, both more
stable and more accurate. Are we ready for a new definition of the second? Here
we present an important step in this direction: our system of five clocks
connects with an unprecedented consistency the optical and the microwave
worlds. For the first time, two state-of-the-art strontium optical lattice
clocks are proven to agree within their accuracy budget, with a total
uncertainty of 1.6x10^(-16). Their comparison with three independent caesium
fountains shows a degree of reproducibility henceforth solely limited at the
level of 3.1x10^(-16) by the best realizations of the microwave-defined second.Comment: 9 pages, 4 figures, 2 table
Ultra-Low Noise Microwave Extraction from Fiber-Based Optical Frequency Comb
In this letter, we report on all-optical fiber approach to the generation of
ultra-low noise microwave signals. We make use of two erbium fiber mode-locked
lasers phase locked to a common ultra-stable laser source to generate an 11.55
GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz
from the carrier.The residual frequency instability of the microwave signals
derived from the two optical frequency combs is below 2.3 10^(-16) at 1s and
about 4 10^(-19) at 6.5 10^(4)s (in 5 Hz bandwidth, three days continuous
operation).Comment: 12 pages, 3 figure
Multi frequency evaporative cooling to BEC in a high magnetic field
We demonstrate a way to circumvent the interruption of evaporative cooling
observed at high bias field for Rb atoms trapped in the (F=2, m=+2)
ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two
RF frequencies. This compensates part of the non linearity of the Zeeman
effect, allowing us to achieve BEC where standard 1-frequency-RF-knife
evaporation method did not work. We are able to get efficient evaporative
cooling, provided that the residual detuning between the transition and the RF
frequencies in our scheme is smaller than the power broadening of the RF
transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure
- …