388 research outputs found

    Sub-100 attoseconds optics-to-microwave synchronization

    Full text link
    We use two fiber-based femtosecond frequency combs and a low-noise carrier suppression phase detection system to characterize the optical to microwave synchronization achievable with such frequency divider systems. By applying specific noise reduction strategies, a residual phase noise as low as -120 dBc/Hz at 1 Hz offset frequency from a 11.55 GHz carrier is measured. The fractional frequency instability from a single optical-to-frequency divider is 1.1E-16 at 1 s averaging down to below 2E-19 after only 1000 s. The corresponding rms time deviation is lower than 100 attoseconds up to 1000 s averaging duration.Comment: 4 pages, 3 figure

    Tapered-amplified AR-coated laser diodes for Potassium and Rubidium atomic-physics experiments

    Full text link
    We present a system of room-temperature extended-cavity grating-diode lasers (ECDL) for production of light in the range 760-790nm. The extension of the tuning range towards the blue is permitted by the weak feedback in the cavity: the diodes are anti-reflection coated, and the grating has just 10% reflectance. The light is then amplified using semiconductor tapered amplifiers to give more than 400mW of power. The outputs are shown to be suitable for atomic physics experiments with potassium (767nm), rubidium (780nm) or both, of particular relevance to doubly-degenerate boson-fermion mixtures

    Ultrastable lasers based on vibration insensitive cavities

    Full text link
    We present two ultra-stable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultra-stable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6e-16 at 1 second, which is the best result obtained for this length of cavity.Comment: 8 pages 12 figure

    Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock

    Full text link
    We demonstrate the use of a fiber-based femtosecond laser locked onto an ultra-stable optical cavity to generate a low-noise microwave reference signal. Comparison with both a liquid Helium cryogenic sapphire oscillator (CSO) and a Ti:Sapphire-based optical frequency comb system exhibit a stability about 3×10153\times10^{-15} between 1 s and 10 s. The microwave signal from the fiber system is used to perform Ramsey spectroscopy in a state-of-the-art Cesium fountain clock. The resulting clock system is compared to the CSO and exhibits a stability of 3.5×1014τ1/23.5\times10^{-14}\tau^{-1/2}. Our continuously operated fiber-based system therefore demonstrates its potential to replace the CSO for atomic clocks with high stability in both the optical and microwave domain, most particularly for operational primary frequency standards.Comment: 3 pages, 3 figure

    Experimenting an optical second with strontium lattice clocks

    Full text link
    Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4x10^(-16), have already been superseded by atomic clocks referenced to an optical transition, both more stable and more accurate. Are we ready for a new definition of the second? Here we present an important step in this direction: our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.6x10^(-16). Their comparison with three independent caesium fountains shows a degree of reproducibility henceforth solely limited at the level of 3.1x10^(-16) by the best realizations of the microwave-defined second.Comment: 9 pages, 4 figures, 2 table

    Ultra-Low Noise Microwave Extraction from Fiber-Based Optical Frequency Comb

    Full text link
    In this letter, we report on all-optical fiber approach to the generation of ultra-low noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultra-stable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier.The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3 10^(-16) at 1s and about 4 10^(-19) at 6.5 10^(4)s (in 5 Hz bandwidth, three days continuous operation).Comment: 12 pages, 3 figure

    Multi frequency evaporative cooling to BEC in a high magnetic field

    Get PDF
    We demonstrate a way to circumvent the interruption of evaporative cooling observed at high bias field for 87^{87}Rb atoms trapped in the (F=2, m=+2) ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two RF frequencies. This compensates part of the non linearity of the Zeeman effect, allowing us to achieve BEC where standard 1-frequency-RF-knife evaporation method did not work. We are able to get efficient evaporative cooling, provided that the residual detuning between the transition and the RF frequencies in our scheme is smaller than the power broadening of the RF transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure
    corecore