474 research outputs found

    Brief Note Bat Species Diversity Patterns in East Central Indiana

    Get PDF
    Author Institution: Aullwood Audubon Center; Department of Zoology, Miami University; Department of Biology, Earlham Colleg

    Anterior temporal lobe is necessary for efficient lateralised processing of spoken word identity.

    Get PDF
    In the healthy human brain, the processing of language is strongly lateralised, usually to the left hemisphere, while the processing of complex non-linguistic sounds recruits brain regions bilaterally. Here we asked whether the anterior temporal lobes, strongly implicated in semantic processing, are critical to this special treatment of spoken words. Nine patients with semantic dementia (SD) and fourteen age-matched controls underwent magnetoencephalography and structural MRI. Voxel based morphometry demonstrated the stereotypical pattern of SD: severe grey matter loss restricted to the anterior temporal lobes, with the left side more affected. During magnetoencephalography, participants listened to word sets in which identity and meaning were ambiguous until word completion, for example PLAYED versus PLATE. Whereas left-hemispheric responses were similar across groups, patients demonstrated increased right hemisphere activity 174-294 msec after stimulus disambiguation. Source reconstructions confirmed recruitment of right-sided analogues of language regions in SD: atrophy of anterior temporal lobes was associated with increased activity in right temporal pole, middle temporal gyrus, inferior frontal gyrus and supramarginal gyrus. Overall, the results indicate that anterior temporal lobes are necessary for normal and efficient lateralised processing of word identity by the language network.The study was primarily funded by the MRC Cognition and Brain Sciences Unit with additional support from the Cambridge NIHR Biomedical Research Centre (the views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care). TEC was supported by the Association of British Neurologists, the Patrick Berthoud Charitable trust, and the NIHR. YS was supported by the Medical Research Council (MC-A060-5PQ90), Lundbeck Foundation (R164-2013-15801, project 18690), Danish Council for Independent Research (6110-00486, project 23776), HSE Basic Research Program and the RF Academic Excellence Project '5-100'. JBR was supported by the Wellcome Trust (103838), and the Medical Research Council (MC-A060-5PQ30 & SUAG/004 RG91365)

    Neurophysiological signatures of Alzheimer's disease and frontotemporal lobar degeneration : pathology versus phenotype

    Get PDF
    The disruption of brain networks is characteristic of neurodegenerative dementias. However, it is controversial whether changes in connectivity reflect only the functional anatomy of disease, with selective vulnerability of brain networks, or the specific neurophysiological consequences of different neuropathologies within brain networks. We proposed that the oscillatory dynamics of cortical circuits reflect the tuning of local neural interactions, such that different pathologies are selective in their impact on the frequency spectrum of oscillations, whereas clinical syndromes reflect the anatomical distribution of pathology and physiological change. To test this hypothesis, we used magnetoencephalography from five patient groups, representing dissociated pathological subtypes and distributions across frontal, parietal and temporal lobes: amnestic Alzheimer's disease, posterior cortical atrophy, and three syndromes associated with frontotemporal lobar degeneration. We measured effective connectivity with graph theory-based measures of local efficiency, using partial directed coherence between sensors. As expected, each disease caused large-scale changes of neurophysiological brain networks, with reductions in local efficiency compared to controls. Critically however, the frequency range of altered connectivity was consistent across clinical syndromes that shared a likely underlying pathology, whilst the localization of changes differed between clinical syndromes. Multivariate pattern analysis of the frequency-specific topographies of local efficiency separated the disorders from each other and from controls (accuracy 62% to 100%, according to the groups' differences in likely pathology and clinical syndrome). The data indicate that magnetoencephalography has the potential to reveal specific changes in neurophysiology resulting from neurodegenerative disease. Our findings confirm that while clinical syndromes have characteristic anatomical patterns of abnormal connectivity that may be identified with other methods like structural brain imaging, the different mechanisms of neurodegeneration also cause characteristic spectral signatures of physiological coupling that are not accessible with structural imaging nor confounded by the neurovascular signalling of functional MRI. We suggest that these spectral characteristics of altered connectivity are the result of differential disruption of neuronal microstructure and synaptic physiology by Alzheimer's disease versus frontotemporal lobar degeneration.Peer reviewe

    GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.

    Get PDF
    To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain

    Evaluación de un programa de intervención prenatal en embarazadas con fetos pequeños para la edad gestacional

    Get PDF
    La prematuridad y el retraso de crecimiento intrauterino constituyen actualmente los problemas más importantes de la Medicina Fetal y de la Neonatología y son las causas más frecuentes de la morbilidad y mortalidad perinatal en los países desarrollados. OBJETIVO. Valorar la eficacia de un programa de intervención de apoyo prenatal (creado ex-novo) dirigido a madres gestantes de fetos Pequeños para la Edad Gestacional (PEG): detectar si este procedimiento mejora el desarrollo físico y neuroconductual del neonato, el estado emocional de la madre y el vínculo entre ambos. METODOLOGÍA. Estudio quasiexperimental tipo ensayo clínico controlado y sin asignación aleatoria de la intervención realizado en el área Materno-fetal de BCNatal (corporación del Servicio de Medicina Maternofetal del Hospital Clínic y el Hospital Sant Joan de Déu de Barcelona). El tamaño final de la muestra fue de 158 embarazadas, de las cuales 65 formaron parte del grupo intervención y 93 formaron parte del grupo control. RESULTADOS. Al finalizar el programa se observa que el feto y el neonato muestran una mayor ganancia de peso y mayor perímetro craneal en el grupo intervención. En cuanto a las capacidades y competencias del neonato, valoradas con la Escala de Brazelton, los del grupo intervención obtienen unos resultados discretamente superiores en casi todos los parámetros estudiados, destacando una mayor capacidad de habituación ante los estímulos auditivos. En relación a la embarazada, los resultados más relevantes al finalizar el programa son una disminución de la ansiedad (valorada con el cuestionario STAI) y una mayor vinculación afectiva materno-filial (valorada con la escala EVAP). CONCLUSIONES. Para las madres gestantes de fetos PEG, el hecho de haber participado en un programa de intervención de apoyo prenatal tiene un resultado beneficioso para ambos, madre e hijo, presentando menos ansiedad materna, mejores condiciones para establecer el vínculo así como una mejora en el desarrollo físico e indicios de mejores capacidades neuroconductuales en el neonato.Prematurity and intrauterine growth restriction are currently the most important problems in Fetal Medicine and Neonatology and also are the most frequent causes of perinatal morbidity and mortality in developed countries.The Objectives were to evaluate the effectiveness of a prenatal support program (created ex-novo) aimed at pregnant mothers of small fetuses for Gestational Age (PEG): to detect if this procedure improves the physical and neurobehavioral development of the neonate, the emotional state of the mother and the bond between them. This was a quasiexperimental study of a controlled clinical trial and without random assignment of the intervention performed in the Maternal-fetal area of BCNatal (Hospital of the Maternal-Fetal Medicine Service of Hospital Clínic and Sant Joan de Déu Hospital in Barcelona). The final sample size was 158 pregnant women, of whom 65 were part of the intervention group and 93 were part of the control group. At the end of the program, it is observed that the fetus and the neonate show a greater weight gain and greater cranial perimeter in the intervention group. As for the abilities and competences of the newborn, evaluated with the Brazelton Scale, those in the intervention group obtained slightly better results in almost all the studied parameters, emphasizing a greater capacity of habituation before the auditory stimuli. In relation to the pregnant woman, the most relevant results at the end of the program are a reduction of anxiety (valued with the STAI questionnaire) and a greater maternal-filial affective attachment (valued with the EVAP scale). In conclusion, for pregnant mothers of PEG fetuses, having participated in a prenatal support intervention program has a beneficial outcome for both mother and child, with less maternal anxiety, better bonding conditions, and improved development physical and signs of better neurobehavioral abilities in the neonate

    GABAergic cortical network physiology in frontotemporal lobar degeneration.

    Get PDF
    The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients' GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials

    Neurophysiological consequences of synapse loss in progressive supranuclear palsy

    Get PDF
    Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from clinical to preclinical models of pathology, and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations like electro- and magneto-encephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by [11C]UCB-J positron emission tomography, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology
    corecore