13 research outputs found

    Convective heat transfer over thin ice covered coastal polynyas

    Get PDF
    Polynyas play an important role in the regional meteorology and oceanography of the high latitudes and in the global ocean circulation. Unique low-level observations of an Antarctic coastal polynya, the Ronne Polynya, were conducted using an instrumented aircraft. At the time of the observations, the polynya was mostly covered with thin ice perforated with holes and was composed of two distinct regimes: an inner region of newly formed and thin ice and an outer region of thicker more consolidated ice. The sensible heat flux over the polynya was similar to 100 W m(-2) and decreased with fetch, primarily as a result of the thickening ice cover. The mean sensible heat transfer and drag coefficients over the polynya were C-HN10 = (0.7 +/- 0.1) x 10(-3) and C-DN10 = (1.1 +/- 0.2) x 10(-3), respectively. The heat transfer coefficient is similar to that found over heterogeneous sea ice and is significantly lower than has been used in previous studies of heat fluxes over polynyas, which are often assumed to be open water. The transfer coefficients were not found to be a function of fetch or ice conditions as represented by the surface temperature and albedo. The data were used in an investigation of the output of sensible heat flux, potential temperature, and boundary layer depth from a simple fetch-dependent model. For this case study, surface temperatures and transfer coefficients appropriate to an ice-covered surface were required for an accurate simulation

    The international sinonasal microbiome study (ISMS): a multi-centre, multi-national characterization of sinonasal bacterial ecology

    No full text
    First published: 13 March 2020The sinonasal microbiome remains poorly defined, with our current knowledge based on a few cohort studies whose findings are inconsistent. Furthermore, the variability of the sinus microbiome across geographical divides remains unexplored. We characterise the sinonasal microbiome and its geographical variations in both health and disease using 16S rRNA gene sequencing of 410 individuals from across the world. Although the sinus microbial ecology is highly variable between individuals, we identify a core microbiome comprised of Corynebacterium, Staphylococcus, Streptococcus, Haemophilus, and Moraxella species in both healthy and chronic rhinosinusitis (CRS) cohorts. Corynebacterium (mean relative abundance = 44.02%) and Staphylococcus (mean relative abundance = 27.34%) appear particularly dominant in the majority of patients sampled. Amongst patients suffering from CRS with nasal polyps, a statistically significant reduction in relative abundance of Corynebacterium (40.29% vs 50.43%; p = 0.02) was identified. Despite some measured differences in microbiome composition and diversity between some of the participating centres in our cohort, these differences would not alter the general pattern of core organisms described. Nevertheless, atypical or unusual organisms reported in short-read amplicon sequencing studies and that are not part of the core microbiome should be interpreted with caution. The delineation of the sinonasal microbiome and standardised methodology described within our study will enable further characterisation and translational application of the sinus microbiota.Sathish Paramasivan, Ahmed Bassiouni ... Clare Cooksley, Mahnaz Ramezanpour, Sophia Moraitis ... Sarah Vreugde ... et al
    corecore