63,890 research outputs found
Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering
We demonstrate, for the first time, successful S-matrix to potential
inversion for spin one projectiles with non-diagonal yielding a
interaction. The method is a generalization of the
iterative-perturbative, IP, method. We present a test case indicating the
degree of uniqueness of the potential. The method is adapted, using established
procedures, into direct observable to potential inversion, fitting ,
, , and for d + alpha scattering over
a range of energies near 10 MeV. The interaction which we find is
very different from that proposed elsewhere, both real and imaginary parts
being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure
Hearing the grass grow. Emotional and epistemological challenges of practice-near research
This paper discusses the concept of practice-near research in terms of the emotional and epistemological challenges that arise from the researcher coming 'near' enough to other people for psychological processes to ensue. These may give rise in the researcher to confusion, anxiety and doubt about who is who and what is what; but also to the possibility of real emotional and relational depth in the research process. Using illustrations from three social work doctoral research projects undertaken by students at the Tavistock Clinic and the University of East London the paper examines four themes that seem to the author to be central to meaningful practice-near research undertaken in a spirit of true emotional and epistemological open-mindedness: the smell of the real; losing our minds; the inevitability of personal change; and the discovery of complex particulars
Stable Topological Superfluid Phase of Ultracold Polar Fermionic Molecules
We show that single-component fermionic polar molecules confined to a 2D
geometry and dressed by a microwave field, may acquire an attractive
dipole-dipole interaction leading to superfluid p-wave pairing at sufficiently
low temperatures even in the BCS regime. The emerging state is the topological
phase promising for topologically protected quantum information
processing. The main decay channel is via collisional transitions to dressed
states with lower energies and is rather slow, setting a lifetime of the order
of seconds at 2D densities cm
Exact and approximate dynamics of the quantum mechanical O(N) model
We study a quantum dynamical system of N, O(N) symmetric, nonlinear
oscillators as a toy model to investigate the systematics of a 1/N expansion.
The closed time path (CTP) formalism melded with an expansion in 1/N is used to
derive time evolution equations valid to order 1/N (next-to-leading order). The
effective potential is also obtained to this order and its properties
areelucidated. In order to compare theoretical predictions against numerical
solutions of the time-dependent Schrodinger equation, we consider two initial
conditions consistent with O(N) symmetry, one of them a quantum roll, the other
a wave packet initially to one side of the potential minimum, whose center has
all coordinates equal. For the case of the quantum roll we map out the domain
of validity of the large-N expansion. We discuss unitarity violation in the 1/N
expansion; a well-known problem faced by moment truncation techniques. The 1/N
results, both static and dynamic, are also compared to those given by the
Hartree variational ansatz at given values of N. We conclude that late-time
behavior, where nonlinear effects are significant, is not well-described by
either approximation.Comment: 16 pages, 12 figrures, revte
Product renovation and shared ownership: sustainable routes to satisfying the world's growing demand for goods
It has been estimated that by 2030 the number of people who are wealthy enough to be considered as middle class consumers will have tripled. This will have a dramatic impact on the demands for primary materials and energy. Much work has been carried out on sustainable ways of meeting the World’s energy demands and some work has been carried out on the sustainable production and consumption of goods. It has been estimated that with improvements in design and manufacturing it is possible to reduce the primary material requirements by 30% to produce the current demand for goods. Whilst this is a crucial step on the production side, there will still be a doubling of primary material requirements by the end of the century because of an absolute rise in demand for goods and services. It is therefore clear that the consumption of products must also be explored. This is a key areas of research for the UK INDEMAND centre, which is investigating ways of reducing the UK’s industrial energy demand and demand for energy intensive materials. Our ongoing work shows that two strategies would result in considerable reductions in the demand for primary materials: product longevity and using goods more intensively (which may requires increased durability). Product longevity and durability are not new ideas, but ones that can be applied across a raft of goods as methods of reducing the consumption of materials. With long life products there is a potential risk of outdated design and obsolescence, consequently there is a need to ensure upgradability and adaptability are incorporated at the design stage. If products last longer, then the production of new products can be diverted to emerging markets rather than the market for replacement goods. There are many goods which are only used occasionally; these goods do not normally wear out. The total demand for such could be drastically reduced if they were shared with other people. Sharing of goods has traditionally been conducted between friends or by hiring equipment. The use of modern communication systems and social media could enable the development of sharing co-ops and swap spaces that will increase the utilisation of goods and hence reduce the demand for new goods. This could also increase access to a range of goods for those on low incomes. From a series of workshops it has been found that the principal challenges are sociological rather than technological. This paper contains a discussion of these challenges and explores possible futures where these two strategies have been adopted. In addition, the barriers and opportunities that these strategies offer for consumers and businesses are identified, and areas where government policy could be instigated to bring about change are highlighted
Stability and dynamical properties of Rosenau-Hyman compactons using Pade approximants
We present a systematic approach for calculating higher-order derivatives of
smooth functions on a uniform grid using Pad\'e approximants. We illustrate our
findings by deriving higher-order approximations using traditional second-order
finite-differences formulas as our starting point. We employ these schemes to
study the stability and dynamical properties of K(2,2) Rosenau-Hyman (RH)
compactons including the collision of two compactons and resultant shock
formation. Our approach uses a differencing scheme involving only nearest and
next-to-nearest neighbors on a uniform spatial grid. The partial differential
equation for the compactons involves first, second and third partial
derivatives in the spatial coordinate and we concentrate on four different
fourth-order methods which differ in the possibility of increasing the degree
of accuracy (or not) of one of the spatial derivatives to sixth order. A method
designed to reduce roundoff errors was found to be the most accurate
approximation in stability studies of single solitary waves, even though all
derivates are accurate only to fourth order. Simulating compacton scattering
requires the addition of fourth derivatives related to artificial viscosity.
For those problems the different choices lead to different amounts of
"spurious" radiation and we compare the virtues of the different choices.Comment: 12 figure
On the properties of compacton-anticompacton collisions
We study the properties of compacton-anticompacton collision processes. We
compare and con- trast results for the case of compacton-anticompacton
solutions of the K(l, p) Rosenau-Hyman (RH) equation for l = p = 2, with
compacton-anticompacton solutions of the L(l,p) Cooper-Shepard- Sodano (CSS)
equation for p = 1 and l = 3. This study is performed using a Pad\'e
discretization of the RH and CSS equations. We find a significant difference in
the behavior of compacton- anticompacton scattering. For the CSS equation, the
scattering can be interpreted as "annihila- tion" as the wake left behind
dissolves over time. In the RH equation, the numerical evidence is that
multiple shocks form after the collision which eventually lead to "blowup" of
the resulting waveform.Comment: 8 pages, 7 figure
Resumming the large-N approximation for time evolving quantum systems
In this paper we discuss two methods of resumming the leading and next to
leading order in 1/N diagrams for the quartic O(N) model. These two approaches
have the property that they preserve both boundedness and positivity for
expectation values of operators in our numerical simulations. These
approximations can be understood either in terms of a truncation to the
infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a
particular two-particle irreducible vacuum energy graph in the effective action
of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the
case of quantum mechanics where the Lagrangian is . The
key to these approximations is to treat both the propagator and the
propagator on similar footing which leads to a theory whose graphs have the
same topology as QED with the propagator playing the role of the photon.
The bare vertex approximation is obtained by replacing the exact vertex
function by the bare one in the exact Schwinger-Dyson equations for the one and
two point functions. The second approximation, which we call the dynamic Debye
screening approximation, makes the further approximation of replacing the exact
propagator by its value at leading order in the 1/N expansion. These two
approximations are compared with exact numerical simulations for the quantum
roll problem. The bare vertex approximation captures the physics at large and
modest better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are
separately liste
Density waves and supersolidity in rapidly rotating atomic Fermi gases
We study theoretically the low-temperature phases of a two-component atomic
Fermi gas with attractive s-wave interactions under conditions of rapid
rotation. We find that, in the extreme quantum limit, when all particles occupy
the lowest Landau level, the normal state is unstable to the formation of
"charge" density wave (CDW) order. At lower rotation rates, when many Landau
levels are occupied, we show that the low-temperature phases can be
supersolids, involving both CDW and superconducting order.Comment: 4 pages, 1 figure, uses feynmp.st
- …