148 research outputs found

    Increasing the scope for polymorph prediction usinge-Science

    Get PDF

    Detection of HER2 amplification in circulating free DNA in patients with breast cancer.

    Get PDF
    BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is amplified and overexpressed in 20-25% of breast cancers. This study investigated circulating free DNA (cfDNA) for detection of HER2 gene amplification in patients with breast cancer. METHODS: Circulating free DNA was extracted from plasma of unselected patients with primary breast cancer (22 before surgery and 68 following treatment), 30 metastatic patients and 98 female controls using the QIAamp Blood DNA Mini Kit (Qiagen). The ratio of HER2 to an unamplified reference gene (contactin-associated protein 1 (CNTNAP1)) was measured in cfDNA samples by quantitative PCR (qPCR) using SK-BR-3 cell line DNA as a positive control. RESULTS: We validated the qPCR assay with DNA extracted from 23 HER2 3+ and 40 HER2-negative tumour tissue samples; the results agreed for 60 of 63 (95.2%) tumours. Amplification was detected in cfDNA for 8 of 68 patients following primary breast cancer treatment and 5 of 30 metastatic patients, but was undetected in 22 patients with primary breast cancer and 98 healthy female controls. Of the patients with amplification in cfDNA, 10 had HER2 3+ tumour status by immunohistochemistry. CONCLUSIONS: The results demonstrate for the first time the existence of amplified HER2 in cfDNA in the follow-up of breast cancer patients who are otherwise disease free. This approach could potentially provide a marker in patients with HER2-positive breast cancer

    Influence of plasma processing on recovery and analysis of circulating nucleic acids.

    Get PDF
    Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp(®) DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90%) of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA

    Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high CTC counts

    Get PDF
    Purpose: The purpose of this study was to directly compare mutation profiles in multiple single CTCs and cfDNA isolated from the same blood samples taken from patients with metastaic breast cancer (MBC). We aimed to determine whether cell-free DNA would reflect the heterogeneity observed in 40 single CTCs. Experimental design: CTCs were enumerated by Cellsearch. CTC count was compared with the quantity of matched cfDNA and serum CA15-3 and alkaline phosphatase (ALP) in 112 patients with metastatic breast cancer. In 5 patients with {greater than or equal to}100 CTCs, multiple individual EpCAM-positive CTCs were isolated by DEPArray and compared with matched cfDNA and primary tumour tissue by targeted next generation sequencing (NGS) of ~2200 mutations in 50 cancer genes. Results: In the whole cohort, total cfDNA levels and cell counts ({greater than or equal to}5 CTCs) were both significantly associated with overall survival, unlike CA15-3 and ALP. NGS analysis of 40 individual EpCAM-positive CTCs from 5 patients with MBC revealed mutational heterogeneity in PIK3CA, TP53, ESR1 and KRAS genes between individual CTCs. In all 5 patients cfDNA profiles provided an accurate reflection of mutations seen in individual CTCs. ESR1 and KRAS gene mutations were absent from primary tumour tissue and therefore likely reflect either a minor sub-clonal mutation or were acquired with disease progression. Conclusion: Our results demonstrate that cfDNA reflects persisting EpCAM-positive CTCs in patients with high CTC counts and therefore may enable monitoring of the metastatic burden for clinical decision-making. Experimental Design: DNA methylation was investigated in independent tumor cohorts using Illumina HumanMethylation arrays and gene expression by Affymetrix arrays and qRT-PCR. The role of Msh homeobox 1 (MSX1) in drug sensitivity was investigated by gene reintroduction and siRNA knockdown of ovarian cancer cell lines. Results: CpG sites at contiguous genomic locations within the MSX1 gene have significantly lower levels of methylation in independent cohorts of HGSOC patients, which recur by 6 months compared with after 12 months (P < 0.05, q < 0.05, n = 78), have poor RECIST response (P < 0.05, q < 0.05, n = 61), and are associated with PFS in an independent cohort (n = 146). A decrease in methylation at these CpG sites correlates with decreased MSX1 gene expression. MSX1 expression is associated with PFS (HR, 0.92; 95% CI, 0.85–0.99; P = 0.029; n = 309). Cisplatin-resistant ovarian cancer cell lines have reduced MSX1 expression, and MSX1 overexpression leads to cisplatin sensitization, increased apoptosis, and increased cisplatin-induced p21 expression. Conclusions: Hypomethylation of CpG sites within the MSX1 gene is associated with resistant HGSOC disease at presentation and identifies expression of MSX1 as conferring platinum drug sensitivity

    A geometric network model of intrinsic grey-matter connectivity of the human brain

    Get PDF
    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models

    Shallow WGS of individual CTCs identifies actionable targets for informing treatment decisions in metastatic breast cancer

    Get PDF
    Background We report copy-number profiling by low-pass WGS (LP-WGS) in individual circulating tumour cells (CTCs) for guiding treatment in patients with metastatic breast cancer (MBC), comparing CTC results with mutations detected in circulating tumour DNA (ctDNA) in the same blood samples. Methods Across 10 patients with MBC who were progressing at the time of blood sampling and that had >20 CTCs detected by CellSearch®, 63 single cells (50 CTCs and 13 WBCs) and 16 cell pools (8 CTC pools and 8 WBC pools) were recovered from peripheral blood by CellSearch®/DEPArray™ and sequenced with Ampli1 LowPass technology (Menarini Silicon Biosystems). Copy-number aberrations were identified using the MSBiosuite software platform, and results were compared with mutations detected in matched plasma cfDNA analysed by targeted next-generation sequencing using the Oncomine™ Breast cfDNA Assay (Thermo Fisher). Results LP-WGS data demonstrated copy-number gains/losses in individual CTCs in regions including FGFR1, JAK2 and CDK6 in five patients, ERBB2 amplification in two HER2-negative patients and BRCA loss in two patients. Seven of eight matched plasmas also had mutations in ctDNA in PIK3CA, TP53, ESR1 and KRAS genes with mutant allele frequencies (MAF) ranging from 0.05 to 33.11%. Combining results from paired CTCs and ctDNA, clinically actionable targets were identified in all ten patients. Conclusion This combined analysis of CTCs and ctDNA may offer a new approach for monitoring of disease progression and to direct therapy in patients with advanced MBC, at a time when they are coming towards the end of other treatment options

    The presence of disseminated tumour cells in the bone marrow is inversely related to circulating free DNA in plasma in breast cancer dormancy

    Get PDF
    Background: The aim of this study was to gain insight into breast cancer dormancy by examining different measures of minimal residual disease (MRD) over time in relation to known prognostic factors. Methods: Sixty-four primary breast cancer patients on follow-up (a median of 8.3 years post surgery) who were disease free had sequential bone marrow aspirates and blood samples taken for the measurement of disseminated tumour cells (DTCs), circulating tumour cells (CTCs) by CellSearch and qPCR measurement of overlapping (96-bp and 291-bp) amplicons in circulating free DNA (cfDNA). Results: The presence of CTCs was correlated with the presence of DTCs measured by immunocytochemistry (P=0.01) but both were infrequently detected. Increasing cfDNA concentration correlated with ER, HER2 and triple-negative tumours and high tumour grade, and the 291-bp amplicon was inversely correlated with DTCs measured by CK19 qRT-PCR (P=0.047). Conclusion: Our results show that breast cancer patients have evidence of MRD for many years after diagnosis despite there being no overt evidence of disease. The inverse relationship between bone marrow CK19 mRNA and the 291-bp amplicon in cfDNA suggests that an inverse relationship between a measure of cell viability in the bone marrow (DTCs) and cell death in the plasma occurs during the dormancy phase of breast cancer

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Molecular signatures of in vitro drug response in lung cancer

    Get PDF
    Poster Presentations - Molecular Classification of Tumors and Novel Biomarkers: abstract no. 5589This journal suppl. entitled : Proceedings: AACR 104th Annual Meeting 2013 ...We are developing in vitro drug response signatures based on profiling of mRNA (Illumina WG6-V3 arrays), DNA mutation (COSMIC and deep sequencing), DNA copy number (Illumina Human1M-Duov3 SNP array) and DNA methylation (Illumina HumanMethylation450) from lung cancer cell lines to predict which drugs a patient's tumor is most likely to respond to. We have generated drug response phenotypes (MTS colorimetric assays) for 25 standard, targeted, and new chemotherapy agents and combinations for 100 ...postprin
    • …
    corecore