61 research outputs found
A mathematical model of levodopa medication effect on basal ganglia in parkinson’s disease: An application to the alternate finger tapping task
Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations in the dopaminergic system, are responsible for an array of motor disorders and milder cognitive issues in Parkinson's disease (PD). Recently Baston and Ursino (2015a) presented a new neuroscience mathematical model aimed at exploring the role of basal ganglia in action selection. The model is biologically inspired and reproduces the main BG structures and pathways, modeling explicitly both the dopaminergic and the cholinergic system. The present work aims at interfacing this neurocomputational model with a compartmental model of levodopa, to propose a general model of medicated Parkinson's disease. Levodopa effect on the striatum was simulated with a two-compartment model of pharmacokinetics in plasma joined with a motor effect compartment. The latter is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill law) between concentration and effect. The main parameters of this relationship are saturation, steepness, and the half-maximum concentration. The effect of levodopa is then summed to a term representing the endogenous dopamine effect, and is used as an external input for the neurocomputation model; this allows both the temporal aspects of medication and the individual patient characteristics to be simulated. The frequency of alternate tapping is then used as the outcome of the whole model, to simulate effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary performed on data of six patients with Parkinson's disease (both “stable” and “wearing-off” responders) after levodopa standardized oral dosing over 4 h. Results show that the model is able to reproduce the temporal profiles of levodopa in plasma and the finger tapping frequency in all patients, discriminating between different patterns of levodopa motor response. The more influential parameters are the Hill coefficient, related with the slope of the effect sigmoidal relationship, the drug concentration at half-maximum effect, and the drug removal rate from the effect compartment. The model can be of value to gain a deeper understanding on the pharmacokinetics and pharmacodynamics of the medication, and on the way dopamine is exploited in the neural circuitry of the basal ganglia in patients at different stages of the disease progression
Sex Is the Main Determinant of Levodopa Clinical Pharmacokinetics: Evidence from a Large Series of Levodopa Therapeutic Monitoring
Background: Different studies, mostly with limited cohorts, have suggested the effects of patients' characteristics on levodopa (LD) pharmacokinetics.
Objective: We primarily aimed at investigating in a large population the relationship between patients' features and LD kinetic variables, to assess the main demographic and clinical predictors of LD clinical pharmacokinetics.
Methods: The study was retrospective, based on data collected from subjects with parkinsonism on chronic LD undergoing LD therapeutic monitoring (TM). LD TM includes serial quantitative motor tests and blood samples to measure plasma drug concentrations after each subject's chronically taken first-morning LD dose intake.
Results: Five hundred patients, 308 males (61.6%), mean (SD) age of 65 (10.1) years were included. Parkinsonian symptoms and LD therapy lasted 5.5 (4.5) and 3.4 (3.9) years, respectively. MDS-UPDRS part III "off" score was 28.8 (15.2). LD dose was 348.2 (187.1) mg/day. From multiple linear regression analysis, test dose, sex, type of LD decarboxylase inhibitor, weight and MDS-UPDRS part III score were linear predictors of both LD peak plasma concentration (Cmax) (R2 = 0.52) and area under the 3-h plasma concentration-time curve (AUC) (R2 = 0.71), while age was a further predictor only for AUC. Besides test dose, sex was the strongest independent contributing variable to LD AUC, which resulted 27% higher in females compared to males.
Conclusion: This is the largest collection of data on the relationship between demographic and clinical-therapeutic variables and LD kinetics in patients with parkinsonian symptoms. As a main clinically practical finding, women might require a 25% reduced weight-normalized LD dose compared with men to achieve the same LD bioavailability
Cannabis-Based Products in a Neurological Setting: A Clinical and Pharmacokinetic Survey
Background and aim: Limited data are available in clinical settings on the pharmacokinetics of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). We investigated the use of cannabis-based products in neurological practice, monitoring patients' steady-state cannabinoids (CBs) plasma concentrations matched with different preparations. Methods: This was a prospective, single-center, observational study. Patients underwent venous blood withdrawal before the CBs' morning dose and then 2.5 h post-dosing. Spasticity or pain were patient self-assessed by the Numeric Rating Scale (NRS) before the morning CB's administration and 2.5 h post-dosing. Results: Thirty-three patients were enrolled. Main indications for CBs were spasticity and chronic pain. Sixteen patients were treated with oromucosal spray formulation Sativex® and 17 with oil-based solutions. Both CBs trough plasma concentrations were ≤ limit of detection (0.1 ng/ml) in 45% of patients. Intrasubject CB's plasma levels significantly increased over baseline values in patients treated with Bediol® oil (p < 0.05) and Sativex® (p < 0.01). Post-dosing CB's bioavailability did not significantly differ between oral oil and oromucosal spray. NRS scores decreased (p < 0.01), matching the increase (p < 0.01) in CB's plasma concentrations. Conclusion: This is the first study investigating CB's plasma concentrations of oral and oromucosal preparations in real-world neurological practice. Findings of similar bioavailability for both CBD and THC after galenic oil compared with oromucosal spray dosing may be clinically relevant and deserve additional research in larger cohorts
Risk Factors and Outcomes Related to Pediatric Intensive Care Unit Admission after Hematopoietic Stem Cell Transplantation: A Single-Center Experience
Abstract To describe incidence, causes, and outcomes related to pediatric intensive care unit (PICU) admission for patients undergoing hematopoietic stem cell transplantation (HSCT), we investigated the risk factors predisposing to PICU admission and prognostic factors in terms of patient survival. From October 1998 to April 2015, 496 children and young adults (0 to 23 years) underwent transplantation in the HSCT unit. Among them, 70 (14.1%) were admitted to PICU. The 3-year cumulative incidence of PICU admission was 14.3%. The main causes of PICU admission were respiratory failure (36%), multiple organ failure (16%), and septic shock (13%). The overall 90-day cumulative probability of survival after PICU admission was 34.3% (95% confidence interval, 24.8% to 47.4%). In multivariate analysis, risk factors predisposing to PICU admission were allogeneic HSCT (versus autologous HSCT, P  = .030) and second or third HSCT ( P  = .018). Characteristics significantly associated with mortality were mismatched HSCT ( P  = .011), relapse of underlying disease before PICU admission ( P P  = .012), hepatic failure at admission ( P  = .021), and need for invasive ventilation during PICU course (
Mucuna pruriens for Parkinson's disease: Low-cost preparation method, laboratory measures and pharmacokinetics profile
Abstract Background Parkinson's disease (PD) is a progressive neurological condition. Levodopa (LD) is the gold standard therapy for PD patients. Most PD patients in low-income areas cannot afford long-term daily Levodopa therapy. The aim of our study was to investigate if Mucuna pruriens (MP), a legume with high LD content that grows in tropical regions worldwide, might be potential alternative for poor PD patients. Methods We analyzed 25 samples of MP from Africa, Latin America and Asia. We measured the content in LD in various MP preparations (dried, roasted, boiled). LD pharmacokinetics and motor response were recorded in four PD patients, comparing MP vs. LD+Dopa-Decarboxylase Inhibitor (DDCI) formulations. Results Median LD concentration in dried MP seeds was 5.29%; similar results were obtained in roasted powder samples (5.3%), while boiling reduced LD content up to 70%. Compared to LD+DDCI, MP extract at similar LD dose provided less clinical benefit, with a 3.5-fold lower median AUC. Conclusion Considering the lack of a DDCI, MP therapy may provide clinical benefit only when content of LD is at least 3.5-fold the standard LD+DDCI. If long-term MP proves to be safe and effective in controlled clinical trials, it may be a sustainable alternative therapy for PD in low-income countries
How resistant are levodopa-resistant axial symptoms? Response of freezing, posture and voice to increasing levodopa intestinal infusion rates in Parkinson's disease
Treatment of freezing of gait (FoG) and other Parkinson's disease (PD) axial symptoms is challenging. Systematic assessments of axial symptoms at progressively increasing levodopa doses are lacking. We sought to analyze the resistance to high levodopa doses of FoG, posture, speech, and altered gait features presenting in daily-ON therapeutic condition
Il monitoraggio terapeutico dei farmaci in neurologia
Therapeutic drug monitoring (TDM) in neurology. TDM relies on the quantitative determination of drugs in biological fluids. Since its introduction in the early sixties, TDM has gone through major steps of development, from a drug assay-oriented to a patient-oriented approach. The acronym TDM is retained, but it is intended as \u201cmanagement\u201d instead of \u201cmonitoring\u201d to emphasize the actual role of laboratory measurement in therapy handling.
In the field of neurology, TDM is a long recognized tool in the clinical management of epilepsies. Moving from our experience in antiepileptic TDM, in this paper we critically revise the pharmacologic and methodologic requirements for a correct application, interpretation and use of TDM in optimizing individual patient drug treatment. The \u201creference range\u201d concept and its limitations are thoroughly discussed. Experimental evidence is also provided outlining the role of TDM in the post-marketing, real-world characterization of clinical and toxicological profiles of new drugs
Simple and rapid validated HPLC-fluorescence determination of perampanel in the plasma of patients with epilepsy
We present a simple and fast high-performance liquid chromatography method with fluorescence detection for the determination of the antiepileptic drug perampanel in human plasma. The chromatographic separation was performed on a Kinetex PFP (100 × 2.6 mm, 4.6 µm) column, using a mobile phase of sodium acetate 0.03 M pH 3.7 and acetonitrile (40/60, v/v), at a flow rate of 0.8 mL/min. Total chromatography time for each run was 5 min. Sample preparation (250 µL) involved only one simple precipitation step by acetonitrile spiked with mirtazapine as internal standard. The method was validated over a concentration range of 20–1000 ng/mL and successfully applied to measure perampanel concentrations in plasma samples obtained from patients with epilepsy. This assay combines the high specificity of fluorescence detection with a very simple and fast sample pretreatment and can offer real advantages over existing methods in terms of simplicity and transferability to a therapeutic drug monitoring setting
A Rapid and Simple UHPLC-MS/MS Method for Quantification of Plasma Globotriaosylsphingosine (lyso-Gb3)
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A gene (GLA) mutations, resulting in loss of activity of the lysosomal hydrolase, α-galactosidase A (α-Gal A). As a result, the main glycosphingolipid substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), accumulate in plasma, urine, and tissues. Here, we propose a simple, fast, and sensitive method for plasma quantification of lyso-Gb3, the most promising secondary screening target for FD. Assisted protein precipitation with methanol using Phree cartridges was performed as sample pre-treatment and plasma concentrations were measured using UHPLC-MS/MS operating in MRM positive electrospray ionization. Method validation provided excellent results for the whole calibration range (0.25–100 ng/mL). Intra-assay and inter-assay accuracy and precision (CV%) were calculated as <10%. The method was successfully applied to 55 plasma samples obtained from 34 patients with FD, 5 individuals carrying non-relevant polymorphisms of the GLA gene, and 16 healthy controls. Plasma lyso-Gb3 concentrations were larger in both male and female FD groups compared to healthy subjects (p < 0.001). Normal levels of plasma lyso-Gb3 were observed for patients carrying non-relevant mutations of the GLA gene compared to the control group (p = 0.141). Dropping the lower limit of quantification (LLOQ) to 0.25 ng/mL allowed us to set the optimal plasma lyso-Gb3 cut-off value between FD patients and healthy controls at 0.6 ng/mL, with a sensitivity of 97.1%, specificity of 100%, and accuracy of 0.998 expressed by the area under the ROC curve (C.I. 0.992 to 1.000, p-value < 0.001). Based on the results obtained, this method can be a reliable tool for early phenotypic assignment, assessing diagnoses in patients with borderline GalA activity, and confirming non-relevant mutations of the GLA gene
- …