283 research outputs found

    Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    Get PDF
    Background: Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Methods: Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro) or using Biosensors (in vivo). Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. Results: SL7838 generated nitric oxide (NO) in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838

    Fibered Confocal Microscopy of Bladder Tumors: An ex Vivo Study

    Full text link
    Background and Purpose: The inadequacy of white-light cystoscopy to detect flat bladder tumors is well recognized. Great interest exists in developing other imaging technologies to augment or supplant conventional cystoscopy. Fibered confocal microscopy offers the promise of providing in vivo histopathologic information to help distinguish malignant from benign bladder lesions. We report the initial use of this technology to visualize tumors in the human bladder. Materials and Methods: We performed ex vivo fibered confocal imaging of fresh radical cystectomy specimens using the Mauna Kea Technologies Cellvizio system. The findings were compared with results from standard histopathology. Results: The bladders of four patients were imaged using the fibered confocal microscope. Normal and neoplastic urothelium manifested differences in cellular and vascular density. Conclusion: This study demonstrates the feasibility of using fibered confocal microscopy to detect histologic differences between normal and neoplastic urothelium, and establishes a foundation for the use of fiber-based confocal microscopy in clinical studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78112/1/end.2008.0524.pd

    Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence Quantitation

    Get PDF
    ABSTRACT PURPOSE: Depilation-induced skin pigmentation in C57Bl/6 mice is a known occurrence, and presents a unique problem for quantitative optical imaging of small animals, especially for bioluminescence. The work reported here quantitatively investigated the optical attenuation of bioluminescent light due to melanin pigmentation in the skin of transgenic C57B1/6 mice, modified such that luciferase expression is under the transcription control of a physiologically and pharmacologically inducible gene. PROCEDURE: Both in vivo and ex vivo experiments were performed to track bioluminescence signal attenuation through different stages of the mouse hair growth cycle. Simultaneous reflectance measurements were collected in vivo to estimate melanin levels. RESULTS: Biological variability of skin pigmentation was found to dramatically affect collected bioluminescent signal emerging through the skin of the mice. When compared to signal through skin with no pigmentation, the signal through highly-pigmented skin was attenuated an average of 90%. Correlation of reflectance signals to bioluminescence signal loss forms the basis of the proposed correction method. We observed, however, that variability in tissue composition, which results in inconsistent reflectance spectra, limits the accuracy of the correction method but can be improved by incorporating more complex analysis. CONCLUSION: Skin pigmentation is a significant variable in bioluminescent imaging, and should be considered in experimental design and implementation for longitudinal studies, and especially when sensitivity to small signal changes, or differences among animals, is required

    Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    Get PDF
    The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2)) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH(2) supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies

    Development of B Cells and Erythrocytes Is Specifically Impaired by the Drug Celastrol in Mice

    Get PDF
    Background: Celastrol, an active compound extracted from the root of the Chinese medicine ‘‘Thunder of God Vine’’ (Tripterygium wilfordii), exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic potential of celastrol is increasing. However, described side effects following treatment are significant and require investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine hematopoietic system. Methodology/Principal Findings: Animals were treated daily with celastrol over a four-day period and peripheral blood, bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by decreases in populations of common lymphoid progenitors (CLP), common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP). Conclusions/Significance: These results indicate that celastrol acts through regulators of adult hematopoiesis and could be used as a modulator of the hematopoietic system. These observations provide valuable information for further assessmen

    Development of a Three-Dimensional In Vitro Model for Longitudinal Observation of Cell Behavior: Monitoring by Magnetic Resonance Imaging and Optical Imaging

    Get PDF
    Purpose: The aim of this study is the development of a three-dimensional multicellular spheroid cell culture model for the longitudinal comparative and large-scale screening of cancer cell proliferation with noninvasive molecular imaging techniques under controlled and quantifiable conditions. Procedures: The human glioblastoma cell line Gli36ΔEGFR was genetically modified to constitutively express the fluorescence protein mCherry, and additionally labeled with iron oxide nanoparticles for high-field MRI detection. The proliferation of aggregates was longitudinally monitored with fluorescence imaging and correlated with aggregate size by light microscopy, while MRI measurements served localization in 3D space. Irradiation with γ-rays was used to detect proliferational response. Results: Cell proliferation in the stationary three-dimensonal model can be observed over days with high accuracy. A linear relationship of fluorescence intensity with cell aggregate size was found, allowing absolute quantitation of cells in a wide range of cell amounts. Glioblastoma cells showed pronounced suppression of proliferation for several days following high-dose γ-irradiation. Conclusions: Through the combination of two-dimensional optical imaging and 3D MRI, the position of individual cell aggregates and their corresponding light emission can be detected. This allows an exact quantification of cell proliferation, with a focus on very small cell amounts (below 100 cells) using high resolution noninvasive techniques as a well-controlled basis for further cell transplantation studies

    Efficacy assessment of sustained intraperitoneal paclitaxel therapy in a murine model of ovarian cancer using bioluminescent imaging

    Get PDF
    We evaluated the pre-clinical efficacy of a novel intraperitoneal (i.p.) sustained-release paclitaxel formulation (PTXePC) using bioluminescent imaging (BLI) in the treatment of ovarian cancer. Human ovarian carcinoma cells stably expressing the firefly luciferase gene (SKOV3Luc) were injected i.p. into SCID mice. Tumour growth was evaluated during sustained or intermittent courses of i.p. treatment with paclitaxel (PTX). In vitro bioluminescence strongly correlated with cell survival and cytotoxicity. Bioluminescent imaging detected tumours before their macroscopic appearance and strongly correlated with tumour weight and survival. As compared with intermittent therapy with Taxol®, sustained PTXePC therapy resulted in significant reduction of tumour proliferation, weight and BLI signal intensity, enhanced apoptosis and increased survival times. Our results demonstrate that BLI is a useful tool in the pre-clinical evaluation of therapeutic interventions for ovarian cancer. Moreover, these results provide evidence of enhanced therapeutic efficacy with the sustained PTXePC implant system, which could potentially translate into successful clinical outcomes
    • …
    corecore