4,703 research outputs found
Geodesic Flow on the Diffeomorphism Group of the circle
We show that certain right-invariant metrics endow the infinite-dimensional
Lie group of all smooth orientation-preserving diffeomorphisms of the circle
with a Riemannian structure. The study of the Riemannian exponential map allows
us to prove infinite-dimensional counterparts of results from classical
Riemannian geometry: the Riemannian exponential map is a smooth local
diffeomorphism and the length-minimizing property of the geodesics holds.Comment: 15 page
Relative quantum field theory
We highlight the general notion of a relative quantum field theory, which
occurs in several contexts. One is in gauge theory based on a compact Lie
algebra, rather than a compact Lie group. This is relevant to the maximal
superconformal theory in six dimensions.Comment: 19 pages, 4 figures; v2 small changes for publication; v3 small final
changes for publicatio
Recommended from our members
Topological dualities in the Ising model
We relate two classical dualities in low-dimensional quantum field theory:
Kramers-Wannier duality of the Ising and related lattice models in
dimensions, with electromagnetic duality for finite gauge theories in
dimensions. The relation is mediated by the notion of boundary field theory:
Ising models are boundary theories for pure gauge theory in one dimension
higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t
Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects
the multiplicity of topological boundary states. In the process we describe
lattice theories as (extended) topological field theories with boundaries and
domain walls. This allows us to generalize the duality to non-abelian groups;
finite, semi-simple Hopf algebras; and, in a different direction, to finite
homotopy theories in arbitrary dimension
Topological dualities in the Ising model
We relate two classical dualities in low-dimensional quantum field theory:
Kramers-Wannier duality of the Ising and related lattice models in
dimensions, with electromagnetic duality for finite gauge theories in
dimensions. The relation is mediated by the notion of boundary field theory:
Ising models are boundary theories for pure gauge theory in one dimension
higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t
Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects
the multiplicity of topological boundary states. In the process we describe
lattice theories as (extended) topological field theories with boundaries and
domain walls. This allows us to generalize the duality to non-abelian groups;
finite, semi-simple Hopf algebras; and, in a different direction, to finite
homotopy theories in arbitrary dimension.Comment: 62 pages, 22 figures; v2 adds important reference [S]; v2 has
reworked introduction, additional reference [KS], and minor changes; v4 for
publication in Geometry and Topology has all new figures and a few minor
changes and additional reference
Dirac Families for Loop Groups as Matrix Factorizations
We identify the category of integrable lowest-weight representations of the
loop group LG of a compact Lie group G with the linear category of twisted,
conjugation-equivariant curved Fredholm complexes on the group G: namely, the
twisted, equivariant matrix factorizations of a super-potential built from the
loop rotation action on LG. This lifts the isomorphism of K-groups of [FHT1,2,
3] to an equivalence of categories. The construction uses families of Dirac
operators.Comment: 6 pages, research announcement. The complete details and background
will appear in a future pape
Equations of the Camassa-Holm Hierarchy
The squared eigenfunctions of the spectral problem associated with the
Camassa-Holm (CH) equation represent a complete basis of functions, which helps
to describe the inverse scattering transform for the CH hierarchy as a
generalized Fourier transform (GFT). All the fundamental properties of the CH
equation, such as the integrals of motion, the description of the equations of
the whole hierarchy, and their Hamiltonian structures, can be naturally
expressed using the completeness relation and the recursion operator, whose
eigenfunctions are the squared solutions. Using the GFT, we explicitly describe
some members of the CH hierarchy, including integrable deformations for the CH
equation. We also show that solutions of some - dimensional members of
the CH hierarchy can be constructed using results for the inverse scattering
transform for the CH equation. We give an example of the peakon solution of one
such equation.Comment: 10 page
Spatial persistence and survival probabilities for fluctuating interfaces
We report the results of numerical investigations of the steady-state (SS)
and finite-initial-conditions (FIC) spatial persistence and survival
probabilities for (1+1)--dimensional interfaces with dynamics governed by the
nonlinear Kardar--Parisi--Zhang (KPZ) equation and the linear
Edwards--Wilkinson (EW) equation with both white (uncorrelated) and colored
(spatially correlated) noise. We study the effects of a finite sampling
distance on the measured spatial persistence probability and show that both SS
and FIC persistence probabilities exhibit simple scaling behavior as a function
of the system size and the sampling distance. Analytical expressions for the
exponents associated with the power-law decay of SS and FIC spatial persistence
probabilities of the EW equation with power-law correlated noise are
established and numerically verified.Comment: 11 pages, 5 figure
- …