698 research outputs found
Expansion of the Gene Ontology knowledgebase and resources
The Gene Ontology (GO) is a comprehensive resource
of computable knowledge regarding the functions
of genes and gene products. As such, it is extensively
used by the biomedical research community
for the analysis of -omics and related data. Our
continued focus is on improving the quality and utility
of the GO resources, and we welcome and encourage
input from researchers in all areas of biology. In
this update, we summarize the current contents of
the GO knowledgebase, and present several new features
and improvements that have been made to the
ontology, the annotations and the tools. Among the
highlights are 1) developments that facilitate access
to, and application of, the GO knowledgebase, and
2) extensions to the resource as well as increasing
support for descriptions of causal models of biological
systems and network biology. To learn more, visit
http://geneontology.org/
The Gene Ontology Resource: 20 years and still GOing strong.
The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the 'GO ribbon' widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page
The Gene Ontology's Reference Genome Project: a unified framework for functional annotation across species.
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content
Towards Inference of a Biochemical Ontology From a Metabolic Database
In order to predict the metabolic fate of an arbitrary compound based solely on
structure, it is useful to be able to identify substructural ‘functional groups’ that are
biochemically reactive. These functional groups are the substructural elements that
can be removed and replaced to transform one compound into another. This problem
of identifying functional groups is related to the problem of classifying compounds.
The research presented here discusses the state of the art in biochemical databases
and how these sources may be applied to the problem of classifying compounds based
solely on structure. We describe a biochemical informatics system for processing
molecular data and describe how 100 255 compositional (hasA) relationships are
inferred between 835 abstractions and 9500 metabolites from the KEGG Ligand
database. Specifically, we focus on the identification of amino acids and consider ways
in which the inference of biochemical ontologies for metabolites will be improved in
the future
GONUTS: the Gene Ontology Normal Usage Tracking System
The Gene Ontology Normal Usage Tracking System (GONUTS) is a community-based browser and usage guide for Gene Ontology (GO) terms and a community system for general GO annotation of proteins. GONUTS uses wiki technology to allow registered users to share and edit notes on the use of each term in GO, and to contribute annotations for specific genes of interest. By providing a site for generation of third-party documentation at the granularity of individual terms, GONUTS complements the official documentation of the Gene Ontology Consortium. To provide examples for community users, GONUTS displays the complete GO annotations from seven model organisms: Saccharomyces cerevisiae, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Arabidopsis thaliana. To support community annotation, GONUTS allows automated creation of gene pages for gene products in UniProt. GONUTS will improve the consistency of annotation efforts across genome projects, and should be useful in training new annotators and consumers in the production of GO annotations and the use of GO terms. GONUTS can be accessed at http://gowiki.tamu.edu. The source code for generating the content of GONUTS is available upon request
Transcription Factor Map Alignment of Promoter Regions
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments
Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development
<p>Abstract</p> <p>Background</p> <p>The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation.</p> <p>Results</p> <p>We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology.</p> <p>Conclusions</p> <p>Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at <url>https://sourceforge.net/tracker/?atid=605890&group_id=36855</url>.</p
- …