298 research outputs found

    Robust regression for large-scale neuroimaging studies

    Get PDF
    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. > 100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain–behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies

    Blunted ventral striatal responses to anticipated rewards foreshadow problematic drug use in novelty-seeking adolescents

    Get PDF
    Novelty-seeking tendencies in adolescents may promote innovation as well as problematic impulsive behaviour, including drug abuse. Previous research has not clarified whether neural hyper- or hypo-responsiveness to anticipated rewards promotes vulnerability in these individuals. Here we use a longitudinal design to track 144 novelty-seeking adolescents at age 14 and 16 to determine whether neural activity in response to anticipated rewards predicts problematic drug use. We find that diminished BOLD activity in mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal cortex) regions during reward anticipation at age 14 predicts problematic drug use at age 16. Lower psychometric conscientiousness and steeper discounting of future rewards at age 14 also predicts problematic drug use at age 16, but the neural responses independently predict more variance than psychometric measures. Together, these findings suggest that diminished neural responses to anticipated rewards in novelty-seeking adolescents may increase vulnerability to future problematic drug use

    Sleep habits, academic performance, and the adolescent brain structure

    Get PDF
    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.Peer reviewe

    Machine Learning Patterns for Neuroimaging-Genetic Studies in the Cloud

    Get PDF
    International audienceBrain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a two weeks deployment on hundreds of virtual machines

    Randomized parcellation based inference.

    Get PDF
    International audienceNeuroimaging group analyses are used to relate inter-subject signal differences observed in brain imaging with behavioral or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. We introduce a new approach to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on synthetic and real data, this approach shows higher sensitivity, better accuracy and higher reproducibility than state-of-the-art methods. In a neuroimaging-genetic application, we find that it succeeds in detecting a significant association between a genetic variant next to the COMT gene and the BOLD signal in the left thalamus for a functional Magnetic Resonance Imaging contrast associated with incorrect responses of the subjects from a Stop Signal Task protocol

    GABRB1 Single Nucleotide Polymorphism Associated with Altered Brain Responses (but not Performance) during Measures of Impulsivity and Reward Sensitivity in Human Adolescents.

    Get PDF
    Variations in genes encoding several GABAA receptors have been associated with human drug and alcohol abuse. Among these, a number of human studies have suggested an association between GABRB1, the gene encoding GABAA receptor β1 subunits, with Alcohol dependence (AD), both on its own and comorbid with other substance dependence and psychiatric illnesses. In the present study, we hypothesized that the GABRB1 genetically-associated increased risk for developing alcoholism may be associated with impaired behavioral control and altered sensitivity to reward, as a consequence of altered brain function. Exploiting the IMAGEN database (Schumann et al., 2010), we explored in a human adolescent population whether possession of the minor (T) variant of the single nucleotide polymorphism (SNP) rs2044081 is associated with performance of tasks measuring aspects of impulsivity, and reward sensitivity that are implicated in drug and alcohol abuse. Allelic variation did not associate with altered performance in either a stop-signal task (SST), measuring one aspect of impulsivity, or a monetary incentive delay (MID) task assessing reward anticipation. However, increased functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) response in the right hemisphere inferior frontal gyrus (IFG), left hemisphere caudate/insula and left hemisphere inferior temporal gyrus (ITG) during MID performance was higher in the minor (T) allelic group. In contrast, during SST performance, the BOLD response found in the right hemisphere supramarginal gyrus, right hemisphere lingual and left hemisphere inferior parietal gyrus indicated reduced responses in the minor genotype. We suggest that β1-containing GABAA receptors may play a role in excitability of brain regions important in controlling reward-related behavior, which may contribute to susceptibility to addictive behavior

    Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control

    Get PDF
    The nicotinic system plays an important role in cognitive control, and is implicated in several neuropsychiatric conditions. Yet, the contributions of genetic variability in this system to individuals' cognitive control abilities are poorly understood, and the brain processes that mediate such genetic contributions remain largely unidentified. In this first large-scale neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and females, fMRI total N=1586, behavioral total N=3650), we investigated a common polymorphism of the high-affinity nicotinic receptor α4β2 (rs1044396 on the CHRNA4 gene) previously implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele impacts). Based on our prior neuroimaging findings, we expected this polymorphism to impact neural activity in the cingulo-opercular network involved in core cognitive control processes including maintenance of alertness. Consistent across the cohorts, all cortical areas of the cingulo-opercular network showed higher activity in heterozygotes compared to both types of homozygotes during cognitive engagement. This inverted U-shaped relation reflects an overdominant effect, i.e. allelic interaction (cumulative evidence p=1.33*10-5). Furthermore, heterozygotes performed more accurately in behavioral tasks that primarily depend on sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we observed that this polymorphism is an expression quantitative trait locus (eQTL) modulating CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. These findings connect CHRNA4genotype, cingulo-opercular network activation and sustained alertness, providing insights into how genetics shapes individuals' cognitive control abilities

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
    corecore