13,347 research outputs found
Real-time pair-feeding of animals
Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag
Inter-cluster filaments in a CDM Universe
The large--scale structure (LSS) in the Universe comprises a complicated
filamentary network of matter. We study this network using a high--resolution
simulation of structure formation of a Cold Dark Matter cosmology. We
investigate the distribution of matter between neighbouring large haloes whose
masses are comparable to massive clusters of galaxies. We identify a total of
228 filaments between neighbouring clusters. Roughly half of the filaments are
either warped or lie off the cluster--cluster axis. We find that straight
filaments on the average are shorter than warped ones. More massive clusters
are connected to more filaments than less massive ones on average. This finding
indicates that the most massive clusters form at the intersections of the
filamentary backbone of LSS. For straight filaments, we compute mass profiles.
Radial profiles show a fairly well--defined radius, , beyond which the
profiles follow an power law fairly closely. For the majority of
filaments, lies between 1.5 Mpc and 2.0 Mpc. The
enclosed overdensity inside varies between a few times up to 25 times
mean density, independent of the length of the filaments. Along the filaments'
axes, material is not distributed uniformly. Towards the clusters, the density
rises, indicating the presence of the cluster infall regions. In addition, we
also find some sheet--like connections between clusters. In roughly a fifth of
all cluster--cluster connections where we could not identify a filament or
sheet, projection effects lead to filamentary structures in the projected mass
distribution. (abridged)Comment: 10 pages, 18 figures; submitted to MNRAS; updated: final version,
accepted for publicatio
Automatic real-time pair-feeding system for animals
A pair feeding method and apparatus are provided for experimental animals wherein the amount of food consumed is immediately delivered to a normal or control animal so that there is a qualitative, quantitative and chronological correctness in the pair feeding of the two animals. This feeding mechanism delivers precisely measured amounts of food to a feeder. Circuitry is provided between master and slave feeders so that there is virtually no chance of a malfunction of the feeding apparatus, causing erratic results. Recording equipment is also provided so that an hourly record is kept of food delivery
The extraordinary mid-infrared spectral properties of FeLoBAL Quasars
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with
the Spitzer space telescope. The spectra span a range of shapes, from hot dust
dominated AGN with silicate emission at 9.7 microns, to moderately obscured
starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The
spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen
in any QSO at any redshift, implying that the starburst dominates the mid-IR
emission with an associated star formation rate of order 2700 solar masses per
year. With the caveats that our sample is small and not robustly selected, we
combine our mid-IR spectral diagnostics with previous observations to propose
that FeLoBAL QSOs are at least largely comprised of systems in which (a) a
merger driven starburst is ending, (b) a luminous AGN is in the last stages of
burning through its surrounding dust, and (c) which we may be viewing over a
restricted line of sight range.Comment: ApJ, accepte
Alloreactive cytotoxic T lymphocytes generated in the presence of viral- derived peptides show exquisite peptide and MHC specificity
The nature of alloreactivity to MHC molecules has been enigmatic, primarily because of the observation that allogeneic responses are considerably stronger than syngeneic responses. To better determine the specificity potential of allogeneic responses, we have generated alloreactive CTL specific for exogenous, viral-derived peptide ligands. This approach allowed us to critically evaluate both the peptide- and MHC-specificity of these alloreactive T cells. Exploiting the accessibility of the H-2Ld class I molecule for exogenous peptide ligands, alloreactive CTL were generated that are specific for either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis virus (LCMV) peptides bound by Ld alloantigens. Peptide specificity was initially observed in bulk cultures of alloreactive CTL only when tested on peptide-sensitized T2.Ld target cells that have defective presentation of endogenous peptides. Subsequent cloning of bulk alloreactive CTL lines generated to MCMV yielded CTL clones that had exquisitely specific MCMV peptide recognition requirement. All of the MCMV/Ld alloreactive CTL clones were also exquisitely MHC-specific in that none of the CTL clones lysed targets expressing MCMV/Lq complexes, even though Lq differs from Ld by only six amino acid residues and Lq also binds the MCMV peptide. This observation clearly demonstrates that alloreactive CTL are capable of the same degree of specificity for target cell recognition as are syngeneic CTL in MHC-restricted responses
Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems
The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power
Differentiation of Cardiac from Noncardiac Pleural Effusions in Cats using Second-Generation Quantitative and Point-of-Care NT-proBNP Measurements
BACKGROUND: Pleural effusion is a common cause of dyspnea in cats. Nâterminal proâBâtype natriuretic peptide (NTâproBNP) measurement, using a firstâgeneration quantitative ELISA, in plasma and pleural fluid differentiates cardiac from noncardiac causes of pleural effusion. HYPOTHESIS/OBJECTIVES: To determine whether NTâproBNP measurements using secondâgeneration quantitative ELISA and pointâofâcare (POC) tests in plasma and pleural fluid distinguish cardiac from noncardiac pleural effusions and how results compare to the firstâgeneration ELISA. ANIMALS: Thirtyâeight cats (US cohort) and 40 cats (UK cohort) presenting with cardiogenic or noncardiogenic pleural effusion. METHODS: Prospective cohort study. Twentyâone and 17 cats in the US cohort, and 22 and 18 cats in the UK cohort were classified as having cardiac or noncardiac pleural effusion, respectively. NTâproBNP concentrations in paired plasma and pleural fluid samples were measured using secondâgeneration ELISA and POC assays. RESULTS: The secondâgeneration ELISA differentiated cardiac from noncardiac pleural effusion with good diagnostic accuracy (plasma: sensitivity, 95.2%, specificity, 82.4%; pleural fluid: sensitivity, 100%, specificity, 76.5%). NTâproBNP concentrations were greater in pleural fluid (719 pmol/L (134â1500)) than plasma (678 pmol/L (61â1500), P = 0.003), resulting in different cutâoff values depending on the sample type. The POC test had good sensitivity (95.2%) and specificity (87.5%) when using plasma samples. In pleural fluid samples, the POC test had good sensitivity (100%) but low specificity (64.7%). Diagnostic accuracy was similar between firstâ and secondâgeneration ELISA assays. CONCLUSIONS AND CLINICAL IMPORTANCE: Measurement of NTâproBNP using a quantitative ELISA in plasma and pleural fluid or POC test in plasma, but not pleural fluid, distinguishes cardiac from noncardiac causes of pleural effusion in cats
The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field
The Hubble Deep Field (HDF) is the deepest set of multicolor optical
photometric observations ever undertaken, and offers a valuable data set with
which to study galaxy evolution. Combining the optical WFPC2 data with
ground-based near-infrared photometry, we derive photometrically estimated
redshifts for HDF galaxies with J<23.5. We demonstrate that incorporating the
near-infrared data reduces the uncertainty in the estimated redshifts by
approximately 40% and is required to remove systematic uncertainties within the
redshift range 1<z<2. Utilizing these photometric redshifts, we determine the
evolution of the comoving ultraviolet (2800 A) luminosity density (presumed to
be proportional to the global star formation rate) from a redshift of z=0.5 to
z=2. We find that the global star formation rate increases rapidly with
redshift, rising by a factor of 12 from a redshift of zero to a peak at z~1.5.
For redshifts beyond 1.5, it decreases monotonically. Our measures of the star
formation rate are consistent with those found by Lilly et al. (1996) from the
CFRS at z 2, and
bridge the redshift gap between those two samples. The overall star formation
or metal enrichment rate history is consistent with the predictions of Pei and
Fall (1995) based on the evolving HI content of Lyman-alpha QSO absorption line
systems.Comment: Latex format, 10 pages, 3 postscript figures. Accepted for
publication in Ap J Letter
- âŠ