7,650 research outputs found

    The extraordinary mid-infrared spectral properties of FeLoBAL Quasars

    Get PDF
    We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.Comment: ApJ, accepte

    Communications technology satellite output-tube design and development

    Get PDF
    The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified

    Hybrid expansions for local structural relaxations

    Full text link
    A model is constructed in which pair potentials are combined with the cluster expansion method in order to better describe the energetics of structurally relaxed substitutional alloys. The effect of structural relaxations away from the ideal crystal positions, and the effect of ordering is described by interatomic-distance dependent pair potentials, while more subtle configurational aspects associated with correlations of three- and more sites are described purely within the cluster expansion formalism. Implementation of such a hybrid expansion in the context of the cluster variation method or Monte Carlo method gives improved ability to model phase stability in alloys from first-principles.Comment: 8 pages, 1 figur

    A study of 60 Gigahertz intersatellite link applications

    Get PDF
    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed

    Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model

    Full text link
    Using a new analytic quantum mechanical method based on Slater's Xalpha method, we show that a fairly accurate estimate of the total energy of a molecule can be obtained from the exact energies of its constituent atoms. The mean absolute error in the total energies thus determined for the G2 set of 56 molecules is about 16 kcal/mol, comparable to or better than some popular pure and hybrid density functional models.Comment: 5 pages, REVTE

    Spectral Templates from Multicolor Redshift Surveys

    Get PDF
    Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.Comment: 25 pages, 9 figures, LaTeX AASTeX, accepted for publication in A

    An Evolutionary Paradigm for Dusty Active Galaxies at Low Redshift

    Get PDF
    We apply methods from Bayesian inferencing and graph theory to a dataset of 102 mid-infrared spectra, and archival data from the optical to the millimeter, to construct an evolutionary paradigm for z<0.4 infrared-luminous galaxies (ULIRGs). We propose that the ULIRG lifecycle consists of three phases. The first phase lasts from the initial encounter until approximately coalescence. It is characterized by homogeneous mid-IR spectral shapes, and IR emission mainly from star formation, with a contribution from an AGN in some cases. At the end of this phase, a ULIRG enters one of two evolutionary paths depending on the dynamics of the merger, the available quantities of gas, and the masses of the black holes in the progenitors. On one branch, the contributions from the starburst and the AGN to the total IR luminosity decline and increase respectively. The IR spectral shapes are heterogeneous, likely due to feedback from AGN-driven winds. Some objects go through a brief QSO phase at the end. On the other branch, the decline of the starburst relative to the AGN is less pronounced, and few or no objects go through a QSO phase. We show that the 11.2 micron PAH feature is a remarkably good diagnostic of evolutionary phase, and identify six ULIRGs that may be archetypes of key stages in this lifecycle.Comment: ApJ accepted. Comments welcome. We suggest reading section 2 before looking at the figures. 26 pages, 21 figures, 1 tabl
    corecore