207 research outputs found
Potassium Intake, Bioavailability, Hypertension, and Glucose Control
Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health
Minerals and vitamins in bone health: the potential value of dietary enhancement
Nutrition is important to bone health, and a number of minerals and vitamins have been identified as playing a potential role in the prevention of bone diseases, particularly osteoporosis. Despite this, there is currently no consensus on maximum levels to allow in food or as dietary supplements. The benefits of supplementation of populations at risk of osteoporosis with Ca and vitamin D are well established. Prolonged supplementation of Ca and vitamin D in elderly has been shown to prevent bone loss, and in some intervention studies to prevent fragility fractures. Although P is essential to bone health, the average intake is considered to be more than sufficient and supplementation could raise intake to adverse levels. The role of vitamin K in bone health is less well defined, though it may enhance the actions of Ca and vitamin D. Sr administered in pharmacological doses as the ranelate salt was shown to prevent fragility fractures in postmenopausal osteoporosis. However, there is no hard evidence that supplementation with Sr salts would be beneficial in the general population. Mg is a nutrient implicated in bone quality, but the benefit of supplementation via foodstuffs remains to be established. A consensus on dietary supplementation for bone health should balance the risks, for example, exposure of vulnerable populations to values close to maximal tolerated doses, against evidence for benefits from randomised clinical trials, such as those for Ca and vitamin D. Feedback from community studies should direct further investigations and help formulate a consensus on dietary supplementation for bone healt
Phosphorus Balance in Adolescent Girls and the Effect of Supplemental Dietary Calcium
There are limited data on phosphorus balance and the effect of dietary calcium supplements on phosphorus balance in adolescents. The purpose of this study was to determine phosphorus balance and the effect of increasing dietary calcium intake with a supplement on net phosphorus absorption and balance in healthy adolescent girls. This study utilized stored urine, fecal, and diet samples from a previously conducted study that focused on calcium balance. Eleven healthy girls ages 11 to 14 years participated in a randomized crossover study, which consisted of two 3-week periods of a controlled diet with low (817 ± 19.5 mg/d) or high (1418 ± 11.1 mg/d) calcium, separated by a 1-week washout period. Phosphorus intake was controlled at the same level during both placebo and calcium supplementation (1435 ± 23.5 and 1453 ± 28.0 mg/d, respectively, p = 0.611). Mean phosphorus balance was positive by about 200 mg/d and was unaffected by the calcium supplement (p = 0.826). Urinary phosphorus excretion was lower with the calcium supplement (535 ± 42 versus 649 ± 41 mg/d, p = 0.013), but fecal phosphorus and net phosphorus absorption were not significantly different between placebo and calcium supplement (553 ± 60 versus 678 ± 63 versus mg/d, p = 0.143; 876 ± 62 versus 774 ± 64 mg/d, p = 0.231, respectively). Dietary phosphorus underestimates using a nutrient database compared with the content measured chemically from meal composites by ∼40%. These results show that phosphorus balance is positive in girls during adolescent growth and that a calcium dietary supplement to near the current recommended level does not affect phosphorus balance when phosphorus intake is at 1400 mg/d, a typical US intake level
Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease
Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder
Best Practices for Conducting Observational Research to Assess the Relation between Nutrition and Bone: An International Working Group Summary
Diet is a modifiable factor that can affect bone strength and integrity, and the risk of fractures. Currently, a hierarchy of scientific evidence contributes to our understanding of the role of diet on bone health and fracture risk. The strength of evidence is generally based on the type of study conducted, the quality of the methodology employed, the rigor and integrity of the data collected and analysis plan, and the transparency and completeness of the results. Randomized controlled trials (RCTs) are considered to be the gold standard from a clinical research paradigm, but there is a dearth of high-quality diet-related intervention trials with bone as the primary outcome, forcing the use of observational research to inform research and clinical practices. However, for observational research to be of the most utility, standardization and optimization of the study design, accurate and reliable measurement of key variables, and appropriate data analysis and data reporting are paramount. Although there have been recommendations made in relation to RCTs in the field of nutrition, no clear rubric exists for best practices in conducting observational research with regard to nutrition and bone health. Therefore, the purpose of this paper is to describe the best practices and considerations for designing, conducting, analyzing, interpreting, and reporting observational research specifically for understanding the role of nutrition in bone health, amassed by a global panel of scientific experts with strengths in bone, nutrition epidemiology, physical activity, public health, clinical and translational trials, and observational study methods. The global panel of scientific experts represents the leadership and selected participants from the 10th annual International Symposium for the Nutritional Aspects of Osteoporosis. The topics selected and best practices presented reflect expert opinion and areas of scientific expertise of the authors rather than a systematic or comprehensive literature review or professional reporting guidelines
A Longitudinal Study of the Effect of Genistein on Bone in Two Different Murine Models of Diminished Estrogen-Producing Capacity
This experiment was designed to assess the capacity of dietary genistein (GEN), to attenuate bone loss in ovariectomized (OVX) and ovary-intact VCD-treated mice. Pretreatment of mice with 4-vinylcyclohexene diepoxide (VCD) gradually and selectively destroys ovarian follicles whilst leaving ovarian androgen-producing cells largely intact. VCD induces a perimenopause-like condition prior to the onset of reproductive acyclicity. Sixteen-week-old C57BL/6J mice were randomized to five treatment groups: sham(SHM), OVX, SHM + VCD, OVX + GEN, and SHM + VCD + GEN. In vivo, blood samples were drawn for hormone and isoflavone analyses, estrous cycles were monitored, and X-ray imaging was performed to assess changes in bone parameters. Following sacrifice, ovaries were assessed histologically, bone microarchitecture was evaluated via microcomputed tomography, and bone mechanical properties were measured. Some effects of GEN were observed in OVX mice, but GEN effects were not able to be evaluated in VCD-treated mice due to the subtle diminution of bone during the 4 months of this experiment
Racial Differences in Cortical Bone Mass, Size and Estimated Strength at the Tibial Diaphysis in Early Pubertal Children
poster abstractOsteoporotic fracture rates differ according to race, with blacks having up to half the rate of whites. The reduced fracture rate in blacks has been suggested to be due to their superior bone mass; however, mass is not the sole determinant of bone strength. Bone strength, and consequent fracture risk, is also influenced by how bone material is distributed or structured. It is likely bone structure also contributes to the lower incidence of fractures in blacks and that racial differences in bone structure have roots in childhood. The aim of this study was to assess the influence of race on pQCT-derived cortical bone mass, size and estimated strength at the tibial diaphysis in early pubertal children. 160 children were recruited, with equal subjects according to race (black, n=80; white, n=80) and sex (female, n=80; male, n=80). Subjects were at sexual maturation stages 2 or 3. Tomographic slices of the tibial diaphysis at 66% proximal from the medial malleolus were acquired using pQCT. Slices were assessed for cortical volumetric BMD (Ct.vBMD), cortical BMC (Ct.BMC), total (Tt.Ar) and cortical (Ct.Ar) area, density weighted maximum (IMAX) and minimum (IMIN) second moments of area, density-weighted polar strength-strain index (SSIP), and muscle cross-sectional area (mCSA). Group differences were assessed by two-way analysis of covariance, with race (black vs. white) and sex (female vs. male) as independent variables. Covariates included predicted years from peak height velocity (maturity offset), tibial length and mCSA. There were no interactions between race and sex (all P=0.50-0.98) or main effect for sex (all P=0.08-0.45). Blacks had 15.7% more Ct.BMC, and 10.8-11.8% larger Tt.Ar and Ct.Ar than whites (all P<0.001). The greater enhancement of Ct.BMC relative to Ct.Ar resulted in blacks having 3.6% greater Ct.vBMD than whites (P<0.001). The combination of increased cortical bone mass, size and density in blacks contributed to enhanced estimated bone strength, with IMAX, IMIN and SSIP being 20.0%, 34.5% and 25.2% greater in blacks than whites, respectively (all P<0.001). These data indicate that early pubertal black children have enhanced bone mass, size and estimated bone strength at the tibial diaphysis versus whites, independent of tibial length and mCSA. They suggest bone structural differences may contribute to observed racial differences in fracture rates and that structural divergence between races develops during childhood
Bone Turnover is not Influenced by Serum 25-Hydroxyvitamin D in Pubertal Healthy Black and White Children
Low serum 25-hydroxyvitamin D [25(OH)D] is common in healthy children particularly in blacks. However, serum 25(OH)D concentrations for optimal bone turnover in children is unknown and few data exist that describe effects of increasing serum 25(OH)D on bone turnover markers during puberty. The purpose of this study was to determine the relationships between serum 25(OH)D and changes in serum 25(OH)D and bone turnover in white and black pubertal adolescents. Bone turnover markers were measured in 318 healthy boys and girls from Georgia (34°N) and Indiana (40°N) who participated in a study of oral vitamin D3 supplementation (0 to 4000 IU/d). Serum 25(OH)D, osteocalcin, bone alkaline phosphatase, and urine N-telopeptide cross-links were measured at baseline and 12 weeks. Relationships among baseline 25(OH)D and bone biomarkers, and between changes over 12 weeks were determined and tested for effects of race, sex, latitude, and baseline 25(OH)D. Median 25(OH)D was 27.6 ng/mL (n=318, range 10.1–46.0 ng/mL) at baseline and 34.5 ng/mL (n=302, range 9.7–95.1 ng/mL) at 12 weeks. Neither baseline nor change in 25(OH)D over 12 weeks were associated with bone turnover. The lack of association was not affected by race, sex, latitude, or baseline serum 25(OH)D. Serum 25(OH)D in the range of 10-46 ng/mL appears to be sufficient for normal bone turnover in healthy black and white pubertal adolescents
Effect of Hesperidin with and without a Calcium (Calcilock®) Supplement on Bone Health in Postmenopausal Women
Context:
Citrus fruits contain unique flavanones. One of the most abundant of the flavanones, hesperidin, has been shown to prevent bone loss in ovariectomized rats.
Objective:
The objective of the study was to measure the effect of hesperidin with or without calcium supplementation on bone calcium retention in postmenopausal women.
Design:
The study was a double-blind, placebo-controlled, randomized-order crossover design of 500 g hesperidin with or without 500 mg calcium supplement in 12 healthy postmenopausal women. Bone calcium retention was determined from urinary excretion of the rare isotope, 41Ca, from bone.
Results:
Calcium plus hesperidin, but not hesperidin alone, improved bone calcium retention by 5.5% (P < .04).
Conclusion:
Calcium supplementation (Calcilock), in combination with hesperidin, is effective at preserving bone in postmenopausal women.
- See more at: http://press.endocrine.org/doi/10.1210/jc.2015-3767#sthash.ztalWWcv.dpu
Candidate approaches and challenges
Funding Information: The development of this paper, its open access, assembly, and meetings of the Calcium Task Force were supported by funding from the Children’s Investment Fund Foundation to the Nutrition Science Program of the New York Academy of Sciences. Publisher Copyright: © 2022 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of New York Academy of Sciences.Inadequate dietary calcium intake is a global public health problem that disproportionately affects low- and middle-income countries. However, the calcium status of a population is challenging to measure, and there are no standard methods to identify high-risk communities even in settings with an elevated prevalence of a disease caused or exacerbated by low calcium intake (e.g., rickets). The calcium status of a population depends on numerous factors, including intake of calcium-rich foods; the bioavailability of the types of calcium consumed in foods and supplements; and population characteristics, including age, sex, vitamin D status, and genetic attributes that influence calcium retention and absorption. The aim of this narrative review was to assess candidate indicators of population-level calcium status based on a range of biomarkers and measurement methods, including dietary assessment, calcium balance studies, hormonal factors related to calcium, and health outcomes associated with low calcium status. Several promising approaches were identified, but there was insufficient evidence of the suitability of any single indicator to assess population calcium status. Further research is required to develop and validate specific indicators of calcium status that could be derived from the analysis of data or samples that are feasibly collected in population-based surveys.publishersversionpublishe
- …