82 research outputs found

    A Novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode heterorhabditis bacteriophora

    Get PDF
    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species. © 2012 American Chemical Society

    Outcomes after angiography with sodium bicarbonate and acetylcysteine

    Get PDF
    Background: Intravenous sodium bicarbonate and oral acetylcysteine are widely used to prevent acute kidney injury and associated adverse outcomes after angiography without definitive evidence of their efficacy. Methods: Using a 2-by-2 factorial design, we randomly assigned 5177 patients at high risk for renal complications who were scheduled for angiography to receive intravenous 1.26% sodium bicarbonate or intravenous 0.9% sodium chloride and 5 days of oral acetylcysteine or oral placebo; of these patients, 4993 were included in the modified intention-to-treat analysis. The primary end point was a composite of death, the need for dialysis, or a persistent increase of at least 50% from baseline in the serum creatinine level at 90 days. Contrast-associated acute kidney injury was a secondary end point. Results: The sponsor stopped the trial after a prespecified interim analysis. There was no interaction between sodium bicarbonate and acetylcysteine with respect to the primary end point (P=0.33). The primary end point occurred in 110 of 2511 patients (4.4%) in the sodium bicarbonate group as compared with 116 of 2482 (4.7%) in the sodium chloride group (odds ratio, 0.93; 95% confidence interval [CI], 0.72 to 1.22; P=0.62) and in 114 of 2495 patients (4.6%) in the acetylcysteine group as compared with 112 of 2498 (4.5%) in the placebo group (odds ratio, 1.02; 95% CI, 0.78 to 1.33; P=0.88). There were no significant between-group differences in the rates of contrast-associated acute kidney injury. Conclusions: Among patients at high risk for renal complications who were undergoing angiography, there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury. (Funded by the U.S. Department of Veterans Affairs Office of Research and Development and the National Health and Medical Research Council of Australia; PRESERVE ClinicalTrials.gov number, NCT01467466.

    Decreased Expression Of apM1 in Omental and Subcutaneous Adipose Tissue of Humans With Type 2 Diabetes

    Get PDF
    We have screened a subtracted cDNA library in order to identify differentially expressed genes in omental adipose tissue of human patients with Type 2 diabetes. One clone (#1738) showed a marked reduction in omental adipose tissue from patients with Type 2 diabetes. Sequencing and BLAST analysis revealed clone #1738 was the adipocyte-specific secreted protein gene apM1 (synonyms ACRP30, AdipoQ, GBP28). Consistent with the murine orthologue, apM1 mRNA was expressed in cultured human adipocytes and not in preadipocytes. Using RT-PCR we confirmed that apM1 mRNA levels were significantly reduced in omental adipose tissue of obese patients with Type 2 diabetes compared with lean and obese normoglycemic subjects. Although less pronounced, apM1 mRNA levels were reduced in subcutaneous adipose tissue of Type 2 diabetic patients. Whereas the biological function of apM1 is presently unknown, the tissue specific expression, structural similarities to TNFα and the dysregulated expression observed in obese Type 2 diabetic patients suggest that this factor may play a role in the pathogenesis of insulin resistance and Type 2 diabetes

    Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control

    Get PDF
    Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    Combining motivational and volitional approaches to reducing excessive alcohol consumption in pre-drinkers: A theory-based intervention protocol

    Get PDF
    Background: Pre-drinking refers to the consumption of alcohol at home or a private residence prior to attending a subsequent social event. We present the study protocol of an online theory-based intervention to reduce pre-drinking and related harm in pre-drinking undergraduates, using behavior change techniques targeting the motivational and volitional phases of behaviour. Design: A fully randomized 2 (autonomy support: present vs. absent) x 2 (implementation intention: present vs. absent) between-participants design will be used to ascertain the effectiveness of the intervention in reducing pre-drinking alcohol consumption and alcohol-related harm. Participants will complete a range of theory-based measures prior to being allocated to one of the four experimental conditions. Four weeks later, participants will complete a follow-up questionnaire comprised of theoretical and behavioral measures. Analyses: The main and interactive effects of the intervention components in reducing our primary dependent variables, namely, pre-drinking alcohol consumption and alcohol-related harm at four-week follow-up will be tested. Baseline alcohol consumption and demographic information will be included in the analysis as covariates. Discussion: This online intervention is the first to be developed to reduce pre-drinking alcohol consumption, a behaviour linked to increased risk of alcohol-related harm. The intervention targets motivational and volitional components of the behaviour change process and is therefore likely to lead to greater reductions in pre-drinking alcohol consumption and experience of alcohol-related harm compared to either approach in isolation. If successful, the intervention can be implemented across various contexts and in populations where pre-drinking is prevalent. © 2016 Caudwell et al

    Plant chemicals and the sexual behavior of male tephritid fruit flies

    Get PDF
    Plant compounds affect insects in many different ways. In addition to being a food source, plants also contain secondary metabolites that may have positive and negative impacts on insects. The influence of these compounds on sexual behavior, in particular, has been the focus of many recent studies. Here, we review the existing literature on the effects of plant compounds on the sexual behavior of tephritid fruit fly males. We put special focus on polyphagous species whose males congregate in leks, where females exert strong mate selection. We first summarize the main findings related to plant compounds that increase male signaling behavior and attraction of females and consequently increase mating frequency, a phenomenon that has been recorded mainly for species of Anastrepha and Ceratitis. In other tephritid species, males are attracted to phenylpropanoids produced by plants (such as methyl eugenol or raspberry ketone) that, upon encounter, are consumed and sequestered by males. These compounds, or metabolic derivatives, which normally have negligible nutritional value, are included in the pheromone and also confer advantages in a sexual context: enhanced female attraction and improved male mating success. These phenomena have been reported for several Bactrocera species as well as for Zeugodacus cucurbitae. Because many tephritid species are serious pests, the effect of plant compounds on male behavior has been explored for potential incorporation into control strategies such as the sterile insect technique (SIT). We conclude noting several factors, such as age and nutrition during larval and adult stage, that modulate the effect of plant compounds on male mating behavior as well as some prominent gaps that preclude a thorough understanding of the plant-mediated enhancement of male sexual performance and hence limit our ability to effectively utilize phytochemicals in pest control strategies.Instituto de GenéticaFil: Segura, Diego Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética. Laboratorio de Genética de Insectos de Importancia Económica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belliard, Silvina A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética. Laboratorio de Genética de Insectos de Importancia Económica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vera, María Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Bachmann, Guillermo Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética. Laboratorio de Genética de Insectos de Importancia Económica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ruiz, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Jofre-Barud, Flavia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Delta del Paraná; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lopez, M. Liza. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shelly, Todd E. United States Department of Agriculture. Animal and Plant Health Inspection Service; Estados Unido

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    The first 20 months of the COVID-19 pandemic: Mortality, intubation and ICU rates among 104,590 patients hospitalized at 21 United States health systems

    Get PDF
    Main objective There is limited information on how patient outcomes have changed during the COVID-19 pandemic. This study characterizes changes in mortality, intubation, and ICU admission rates during the first 20 months of the pandemic. Study design and methods University of Wisconsin researchers collected and harmonized electronic health record data from 1.1 million COVID-19 patients across 21 United States health systems from February 2020 through September 2021. The analysis comprised data from 104,590 adult hospitalized COVID-19 patients. Inclusion criteria for the analysis were: (1) age 18 years or older; (2) COVID-19 ICD-10 diagnosis during hospitalization and/or a positive COVID-19 PCR test in a 14-day window (+/- 7 days of hospital admission); and (3) health system contact prior to COVID-19 hospitalization. Outcomes assessed were: (1) mortality (primary), (2) endotracheal intubation, and (3) ICU admission. Results and significance The 104,590 hospitalized participants had a mean age of 61.7 years and were 50.4% female, 24% Black, and 56.8% White. Overall risk-standardized mortality (adjusted for age, sex, race, ethnicity, body mass index, insurance status and medical comorbidities) declined from 16% of hospitalized COVID-19 patients (95% CI: 16% to 17%) early in the pandemic (February-April 2020) to 9% (CI: 9% to 10%) later (July-September 2021). Among subpopulations, males (vs. females), those on Medicare (vs. those on commercial insurance), the severely obese (vs. normal weight), and those aged 60 and older (vs. younger individuals) had especially high mortality rates both early and late in the pandemic. ICU admission and intubation rates also declined across these 20 months. Conclusions Mortality, intubation, and ICU admission rates improved markedly over the first 20 months of the pandemic among adult hospitalized COVID-19 patients although gains varied by subpopulation. These data provide important information on the course of COVID-19 and identify hospitalized patient groups at heightened risk for negative outcomes. Trial registration ClinicalTrials.gov Identifier: NCT04506528 (https://clinicaltrials.gov/ct2/show/NCT04506528)

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore