11,131 research outputs found
Rudiments of Holography
An elementary introduction to Maldacena's AdS/CFT correspondence is given,
with some emphasis in the Fefferman-Graham construction. This is based on
lectures given by one of us (E.A.) at the Universidad Autonoma de Madrid.Comment: 60 pages, additional misprints corrected, references adde
Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources
Axion Like Particles (ALPs) are predicted to couple with photons in the
presence of magnetic fields. This effect may lead to a significant change in
the observed spectra of gamma-ray sources such as AGNs. Here we carry out a
detailed study that for the first time simultaneously considers in the same
framework both the photon/axion mixing that takes place in the gamma-ray source
and that one expected to occur in the intergalactic magnetic fields. An
efficient photon/axion mixing in the source always means an attenuation in the
photon flux, whereas the mixing in the intergalactic medium may result in a
decrement and/or enhancement of the photon flux, depending on the distance of
the source and the energy considered. Interestingly, we find that decreasing
the value of the intergalactic magnetic field strength, which decreases the
probability for photon/axion mixing, could result in an increase of the
expected photon flux at Earth if the source is far enough. We also find a 30%
attenuation in the intensity spectrum of distant sources, which occurs at an
energy that only depends on the properties of the ALPs and the intensity of the
intergalactic magnetic field, and thus independent of the AGN source being
observed. Moreover, we show that this mechanism can easily explain recent
puzzles in the spectra of distant gamma-ray sources... [ABRIDGED] The
consequences that come from this work are testable with the current generation
of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging
atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 16 pages, 7 figures. Replaced to match the published version in Phys.
Rev. D. Minor changes with respect to v
Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by MIPS/Spitzer: Constraint on the Bias
We report the detection of correlated anisotropies in the Cosmic Far-Infrared
Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE
Lockman Hole field. It reveals unambiguously a strong excess above cirrus and
Poisson contributions, at spatial scales between 5 and 30 arcminutes,
interpreted as the signature of infrared galaxy clustering. Using our model of
infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a
factor 2 higher than the bias measured for the local IRAS galaxies. Our model
indicates that galaxies dominating the 160 microns correlated anisotropies are
at z~1. This implies that infrared galaxies at high redshifts are biased
tracers of mass, unlike in the local Universe.Comment: ApJ Letters, in pres
Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection
We report on measurements of 11-18 cm wavelength radio emission from
interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield
Accelerator. The electrons were observed both in a configuration where they
produced primarily transition radiation from an aluminum foil, and in a
configuration designed for the electrons to produce Cherenkov radiation in a
silica sand target. Our aim was to emulate the large electron excess expected
to develop during an electromagnetic cascade initiated by an ultra high-energy
particle. Such charge asymmetries are predicted to produce strong coherent
radio pulses, which are the basis for several experiments to detect high-energy
neutrinos from the showers they induce in Antarctic ice and in the lunar
regolith. We detected coherent emission which we attribute both to transition
and possibly Cherenkov radiation at different levels depending on the
experimental conditions. We discuss implications for experiments relying on
radio emission for detection of electromagnetic cascades produced by ultra
high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR
Muonic hydrogen cascade time and lifetime of the short-lived state
Metastable muonic-hydrogen atoms undergo collisional -quenching,
with rates which depend strongly on whether the kinetic energy is above
or below the energy threshold. Above threshold, collisional
excitation followed by fast radiative
deexcitation is allowed. The corresponding short-lived component
was measured at 0.6 hPa room temperature gas pressure, with
lifetime ns (i.e.,
at liquid-hydrogen density) and population
% (per atom). In
addition, a value of the cascade time, ns, was found.Comment: 4 pages, 3 figure
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Holography in asymptotically flat space-times and the BMS group
In a previous paper (hep-th/0306142) we have started to explore the
holographic principle in the case of asymptotically flat space-times and
analyzed in particular different aspects of the Bondi-Metzner-Sachs (BMS)
group, namely the asymptotic symmetry group of any asymptotically flat
space-time. We continue this investigation in this paper. Having in mind a
S-matrix approach with future and past null infinity playing the role of
holographic screens on which the BMS group acts, we connect the IR sectors of
the gravitational field with the representation theory of the BMS group. We
analyze the (complicated) mapping between bulk and boundary symmetries pointing
out differences with respect to the AdS/CFT set up. Finally we construct a BMS
phase space and a free hamiltonian for fields transforming w.r.t BMS
representations. The last step is supposed to be an explorative investigation
of the boundary data living on the degenerate null manifold at infinity.Comment: 31 pages, several changes in section 3 and 7 and references update
- …
