14 research outputs found
Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Time-dependent deformation processes during nanoindentation have been investigated on a Pd40Cu30Ni10P20 bulk metallic glass. Deformation under constant load has been studied as a function of prior loading rate and temperature. The constant-load displacement of the indenter into the sample shows classic relaxation kinetics and reveals the importance of anelasticity for the mechanical behavior of metallic glasses at the nanoscale
Influence of the substrate on the formation of metallic glass coatings by cold gas spraying
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 10 8 to 10(9) s(-1), involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology
Pr脿ctica de laboratori : assaig Jominy
El projecte consisteix en realitzar una pr脿ctica de laboratori pels alumnes d'Enginyeria de Materials. La pr脿ctica de laboratori consisteix en posar en pr脿ctica l'assaig Jominy. Aquest assaig permet con猫ixer la trempabilitat dels acers. L'assaig s'ha de realitzar sota les condicions que descriu la norma ASTM. A m茅s, en el projecte s'han realitzat assajos de duresa, s'han estudiat les microestructures obtingudes en el material una vegada s'ha realitzat l'assaig i, amb el difractograma de Raigs X, s'han conegut les fases que es trobaven presents en el material. Finalment s'han calculat els costos per una banda de la totalitat del projecte, i per altra banda s'ha calculat el cost que suposaria per a la universitat que els alumnes realitzessin la pr脿ctica
Selective generation of local ferromagnetism in austenitic stainless steel using nanoindentation
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Periodic arrays of magnetic structures with micrometrer and submicrometer lateral sizes have been prepared at the surface of an austenitic stainless steel by means of local deformation using a nanoindenter. This method takes advantage of the phase transformation (from nonmagnetic fcc austenite to ferromagnetic bct martensite) which occurs in this material upon plastic deformation. The local character of the induced ferromagnetism is confirmed by magneto-optical Kerr effect measurements together with magnetic force microscopy imaging. The generated ferromagnetism can be subsequently erased by subjecting the deformed steel to annealing processes at temperatures above the reverse, martensite-to-austenite, phase transformation temperature
Ordering kinetics evaluation of FeAl powders
In this study, time resolved X-ray diffraction experiments using synchrotron X-ray radiation have been performed to get insight on the time and temperature dependent atomic ordering of an intermetallic Fe-40A1 (at.%) ball-milled powder. The target of the present study is to gain knowledge on the rapid heating processes occurring during Thermal Spray coating processes. Present results show that in the temperature range 400 degrees C - 550 degrees C, the evolution of the order can be followed and modelled by fitting the powder diffraction patterns collected within the first minutes after fast heating. Reasonable refinements have been obtained by assuming the presence of two domains corresponding to the ordered and disordered lattices. The lattice constant changes from 0.29165 nm in the ball-milled powder at room temperature to 0.29281 nm in the ordered phase after 3000 s at 550 degrees C. The growth of the ordered phase is proposed to be a vacancy-related process with an activation energy of 1.04 eV. Above 550 degrees C, the ordering kinetics appears too fast to be resolved using the few seconds time scale of the present experiments which is in agreement to thermal spray results conditions
A new alternative for obtaining nanocrystalline bioactive coatings: study of hydroxyapatite deposition mechanisms by cold gas praying
The present article is intended to study the deposition mechanisms of bioactive hydroxyapatite (HA) particles by means of Cold Gas Spraying (CGS). A comparison of the deposition on two different substrates (Ti6Al4V and Al7075T6) and different particle sizes is presented. Although this is a more specific deposition technique for ductile materials, it is here shown that, in certain conditions, ceramic deposition is possible despite the inherent low ductility. The resulting internal structure and the features at the particle-substrate interface are discussed in view of Transmission Electron Microscopy examinations of a Focused Ion Beam lift-out prepared sample. Mainly, under shock compressive loading, the porous sintered powder proceeds through pore collapse, fragmentation and densification as well as grain refinement. The process is described through different plastic mechanisms in ceramics. This opens a new alternative route to produce nanocrystalline HA coatings through a cost-effective proces
Dense nanostructured calcium phosphate coating on titanium by cold spray
This article deals with the understanding of building-up mechanisms of bioactive nanocrystalline hydroxyapatite coatings by Cold Spray, revealing very promising results in contrast to more conventional techniques such as Plasma Spray. A full characterization of feedstock and coatings is provided. The agglomerated structure of the powder proved to be suitable to obtain successfully thick hydroxyapatite coatings. A crystallite size below similar to 20 nm in the powder and the as-sprayed coatings is calculated by the Rietveld X-ray refinement method and agreed by Transmission Electron Microscopy. Some wipe tests were carried out on Ti6Al4V substrates in order to study the deposition of single particles and the nanoscale features were evaluated. The resulting structure indicates that there is no delimitation of particle boundaries and the overall coating has been formed by effective compaction of the original nanocrystallites, leading to consistent and consolidated layers
Deformation behaviour and strengthening of bulk metallic glasses and nanocomposites
A partir dels anys seixanta, els vidres met脿l路lics han estat objecte d'un gran n煤mero d'investigacions, des de llavors s'han realitzat avan莽os molt significatius en la comprensi贸 de la seva estructura i algunes de les seves propietats. Com el seu nom indica, els vidres met脿l路lics s贸n aliatges met脿l路lics que no presenten ordenament at貌mic a llarg abast. Aquesta falta d'ordre els confereix propietats i comportaments considerablement diferents respecte als aliatges cristal路lins. Per exemple, es comporten generalment com materials magn猫tics tous (baixa coercitivitat i elevada permeabilitat) i s'han comercialitzat com a bases de transformadors, cap莽als de lectura magn猫tics i protectors magn猫tics [1]. A partir de certs tractaments t猫rmics o d'altres t猫cniques, 茅s possible controlar la seva total o parcial cristal路litzaci贸. En alguns casos, precipiten nanocristalls repartits uniformement obtenint un material magn猫tic dur amb aplicaci贸 industrial [2]. A part de les seves propietats magn猫tiques, s'ha demostrat que algunes de les seves propietats mec脿niques difereixen significativament dels materials cristal路lins, ja que mostren un elevat l铆mit el脿stic, una elevada deformaci贸 en r猫gim el脿stic, deformaci贸 pl脿stica heterog猫nia i homog猫nia i tamb茅 l'aparici贸 de material fos en les superf铆cies de fractura [3,4].La combinaci贸 d'un elevat l铆mit el脿stic juntament amb la possibilitat d'obtenir vidres met脿l路lics massissos ha obert un nou inter猫s en la utilitzaci贸 d'aquests com a materials estructurals [5]. No obstant aix貌, els vidres met脿l路lics mostren una clara localitzaci贸 de la deformaci贸 pl脿stica en bandes de cisalla al ser deformats a temperatura ambient [6,7]. A m茅s, en lloc d'experimentar enduriment per deformaci贸, els vidres met脿l路lics s'ablaneixen a causa de la formaci贸 de bandes de cisalla que a m茅s impedeixen l'elongaci贸 estable del material quan 茅s deformat en tensi贸. Aix铆 doncs, la millora de la ductilitat d'aquest tipus de materials s'ha convertit en l'objectiu de molts treballs d'investigaci贸. Recentment, s'ha estudiat l'enduriment intr铆nsec dels vidres met脿l路lics [8,9]. S'ha demostrat que existeix correlaci贸 entre l'energia de fractura i el quocient entre el m貌dul de cisalla (G) i el m貌dul de compressibilitat (B). En aquest estudi s'ha concl貌s que una bona forma d'augmentar la plasticitat dels vidres met脿l路lics 茅s escollir els elements que constituiran l'aliatge amb baix G/B o el que 茅s equivalent, elevat coeficient de Poisson. El considerable increment de ductilitat que acompanya l'aparici贸 de m煤ltiples bandes de cisalla, indica que la seva proliferaci贸, independentment de com tingui lloc, hauria de ser un poder贸s mecanisme d'enduriment i ductilitzaci贸 en metalls amorfs [10]. Aix貌 obre clarament una oportunitat per a dissenyar microestructures que endureixin els vidres met脿l路lics massissos a partir de diferents m猫todes. Per exemple, s'ha vist que la pres猫ncia d'una segona fase (amorfa o cristal路lina) amb propietats mec脿niques diferents de la matriu promou la nucleaci贸 de m煤ltiples bandes de cisalla, al mateix temps que impedeix la propagaci贸 de les mateixes. El resultat final 茅s l'augment de la plasticitat d'aquests materials en compressi贸 [11,12].Aix铆 doncs, en aquesta tesi s'han estudiat els fonaments de la deformaci贸 de diverses fam铆lies de vidres met脿l路lics i materials nanocomposats a partir d'assajos de compressi贸 i nanoindentaci贸. Els mecanismes de deformaci贸 el脿stica, anel脿stica i pl脿stica dels vidres met脿l路lics influencien la resposta obtinguda en els experiments de nanoindentaci贸 de forma fonamental. Les observacions i la discussi贸 realitzades en el treball presentat ajuden a diferenciar els tres mecanismes de deformaci贸 en les gr脿fiques obtingues en els experi猫ncies de nanoindentaci贸 realitzades.S'han estudiat els mecanismes de deformaci贸 de diferents materials nanocomposats:- A partir de vidres met脿l路lics basats en Cu s'ha aconseguit la formaci贸 d'un aliatge de matriu amorfa amb una dispersi贸 homog猫nia de cristalls de grand脿ria nanom猫trica. Aix铆 doncs, la cristal路litzaci贸, l'estabilitat t猫rmica i les propietats mec脿niques dels vidres Cu60ZrxTi40-x (x = 15, 20, 22, 25, 30) han estat estudiades. A partir dels coneixements obtinguts s'ha procedit a la obtenci贸 d'un material nanocomposat provocant la cristal路litzaci贸 prim脿ria dels vidres met脿l路lics estudiats anteriorment. S'ha observat que la matriu amorfa domina les propietats mec脿niques del compost, per貌 que la precipitaci贸 d'una fase intermet脿l路lica endureix l'aliatge.- S'han obtingut cintes en el sistema Ni58.5Nb20.25Y21.25 (at%) formades per dues fases amorfes, degut a la immiscibilitat que presenta el sistema Nb-Y tant en estat s貌lid com en estat l铆quid. S'ha observat que la deformaci贸 pl脿stica d'aquest aliatge 茅s clarament diferent al d'un vidre met脿l路lic monol铆tic. Aix铆 doncs, la seva plasticitat i duresa nom茅s es poden explicar degut a la interacci贸 entre les bandes de cisalla formades en la matriu i la segona fase precipitada en forma globular.- S'ha dut a terme l'estudi de l'evoluci贸 microestructural i els mecanismes d'enduriment despr茅s de deformar pl脿sticament per torsi贸 un aliatge basat en Ti format per una matriu eut猫ctica nanom猫trica combinada amb dendrites de grand脿ria microm猫trica. Abans de la deformaci贸 pl脿stica, les dendrites s贸n m茅s dures que la matriu eut猫ctica ja que sofreixen un enduriment per soluci贸 s貌lida. Despr茅s de la deformaci贸, tant la matriu com les dendrites s'endureixen a diferent ritme fins arribar a la mateixa duresa en ambdues fases. Els mecanismes d'aquest enduriment s贸n diferents a cada fase degut a la seva diferent naturalesa.Les investigacions realitzades durant la tesi han perm猫s comprendre millor algunes de les rutes proposades per millorar les propietats mec脿niques dels vidres met脿l路lics, com ara el desenvolupament de nanocomposats o la separaci贸 en dues fases amorfes. La nanoindentaci贸 encara permet estudiar en molts casos la deformaci贸 dels vidres met脿l路lics. Encara que els estudis de la deformaci贸 d'aquests materials utilitzant nanoindentaci贸 no s贸n molt abundants, les avantatges d'aquesta t猫cnica s'han mostrat clarament en aquest treball, com per exemple en l'observaci贸 directe de l'enduriment de les diferents fases constituents d'un material nanocomposat. Per tant, els mecanismes subjacents que governen la deformaci贸 pl脿stica dels materials nanocomposats (per exemple per assajos de compressi贸 o deformaci贸 pl脿stica severa) s'han pogut comprendre millor. A m茅s a m茅s, la utilitzaci贸 de t猫cniques complement脿ries, com la microsc貌pia electr貌nica tant de rastreig com de transmissi贸, ha aportat informaci贸 molt valuosa per investigar els mecanismes microsc貌pics que governen al deformaci贸 pl脿stica en els vidres met脿l路lics i materials nanocomposats.Els mecanismes de deformaci贸 i les aplicacions dels vidres met脿l路lics i materials nanocomposats s贸n encara un camp actiu d'investigaci贸. El treball presentat en aquesta tesi motivar脿 nous estudis en aquest camp cient铆fic, des dels punts de vista te貌ric i tecnol貌gic. Aix铆 doncs, aquesta tesi ajudar脿 en la interpretaci贸 de fen貌mens com l'efecte de grand脿ria de la indentaci贸, processos de relaxaci贸, deformaci贸 c铆clica i deformaci贸 durant la indentaci贸 de vidres met脿l路lics. Finalment, cal dir que s'ha d'investigar molt m茅s en aquests temes per tal d'optimitzar les propietats mec脿niques dels vidres met脿l路lics i aix铆 poder ser utilitzats en aplicacions tecnol貌giques.Refer猫ncies:[1] Masumoto T, Egami T: Mater Sci Eng 1981; 48:147.[2] Croat JJ, Herbst JF, Lee RW, Pinkerton FE: J Appl Phys1984; 55:2078.[3] Pampillo CA, Polk DE: Acta Metall 1974; 22:741.[4] Masumoto T, Maddin R: Mater Sci Eng 1975; 19:1.[5] Hufnagel TC: On Mechanical Behavior of Metallic Glasses, Scripta Mater 2006; viewpoint n潞37.[6] Spaepen F: Acta Metall 1977; 25:407.[7] Argon AS: Acta Metall 1979; 27:47.[8] Lewandowski JJ, Greer AL, Wang WH: Philos Mag Lett 2005; 85:77.[9] Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ: Phys Rev Lett 2005; 94:1255510.[10] Schroers J, Johnson WL: Phys Rev Lett 2004; 93:255506.[11] Hays CC, Kim CP, Johnson WL: Phys Rev Lett 2000; 84:2901.[12] Ott RT, Sansoz F, Molinari JF, Almer J, Ramesh KT, Hufnagel TC: Acta Mater 2005; 53:1883.Metallic glasses have been the subject of widespread research over the past four decades with significant advancement in their understanding. As the name suggests, they are metallic alloys with no long-range order. The lack of long-range atomic order makes their properties and behaviour considerably different from those of crystalline alloys. For example, they typically behave as very soft magnetic materials (low coercitivity and high permeability) and have led to commercial applications such as transformer cores, magnetic read-heads and magnetic shielding [1]. By some specific treatments or techniques, it is possible to control the total or partial crystallization of metallic glasses. In some cases very fine, uniform microstructures have been exploited for their hard magnetism [2]. Furthermore, early work already pointed out that their mechanical behaviour showed unique properties, i.e. high strength, large elastic limit, homogeneous and inhomogeneous modes of deformation, and the novel "molten" appearance of fracture surfaces [3,4].The combination of their high yield strength together with the possibility of casting metallic glasses in bulk form has triggered the interest in using them as structural materials [5]. However, metallic glasses show a distinctive localization of the plastic deformation into shear bands when loaded under ambient conditions [6,7]. Instead of work-hardening, metallic glasses soften due to the shear band formation which prevents stable plastic elongation in tension. Therefore, enhancement of the ductility of this type of materials has been the aim of much research work.Recent works have studied the instrinsic toughening of metallic glasses [8,9]. The competition between flow and fracture relates the resistance to plastic deformation, proportional to G, to the resistance to dilatation that occurs in the region of a crack tip, which is proportional to B. The results of these works on metallic glasses indicate that exceeding a critical value of G/B (i.e. in the range of 0.41-0.43) produces an amorphous/annealed glass that approaches the ideal brittle behaviour associated with oxide glasses. Therefore, the correlation between fracture energy and elastic moduli indicates that the intrinsic toughness in metallic glasses may be enhanced by selection of elements with low G/B (or, equivalently, high Poisson ratio, ?) as constituents.The tremendous toughness increase that accompanies multiple shear banding indicates that proliferation of shear bands, regardless of how it is accomplished, should provide a powerful toughening mechanism in amorphous metals [10]. This clearly provides the opportunity for microstructural design of extrinsically toughened BMGs via a variety of techniques. The presence of a secondary phase (amorphous or crystalline) has been shown to promote multiple shear band nucleation sites via mismatch in various mechanical properties, while also providing barriers to shear band propagation. The result of the promotion of shear bands and hindering their propagation finally results in macroscopic compressive ductility [11,12].The fundamentals of deformation behaviour of several families of metallic glasses and composite materials have been investigated by means of compression tests and nanoindentation experiments. - The mechanisms of elastic, anelastic and plastic deformation of metallic glasses influence the response of the material during a nanoindentation test. The observed and discussed results on the deformation behaviour of a Pd-base BMG will help to differentiate the deformation mechanisms in the load-displacement curve obtained in an indentation test.The fundamentals of deformation behaviour in different composite materials have been studied:- Cu-based metallic glasses have been used to obtain a homogeneous dispersion of nanocrystalls in an amorphous matrix. Therefore, the crystallization behaviour, thermal stability and mechanical properties of Cu-Zr-Ti metallic glasses have been extensively studied. The influence of relaxation and the precipitation of secondary phases on the mechanical response of the studied alloys have been analysed. The precipitation of nanocrystals does not change the main deformation mechanism of these materials and therefore, shear bands form and propagate across the amorphous matrix. Fracture strength and Young's modulus increase with increasing crystalline volume fraction. - Ribbons of the composition Ni58.5Nb20.25Y21.25 (at%) have been obtained and show phase separation due to the immiscibility gap in the Nb-Y system. The mechanical behaviour of a two-phase metallic glass, consisting of a Y-rich softer matrix and a globular harder Nb-rich phase, is clearly different from a monolithic glass. The plasticity and the hardness of the two-phase alloy are enhanced with respect to the single softer amorphous alloy composing the matrix, due to deflection of the shear bands in the vicinity of the hard globular phase.- The microstructure evolution and the mechanisms of mechanical hardening after high pressure torsion in a Ti-based dendrite/eutectic nanostructured alloy have been investigated. The dendrites are found to be harder than the eutectic matrix. The structural refinement that occurs in all phases during the severe plastic deformation imposed by HPT strengthens the material. Interestingly, this hardening is more pronounced for the eutectic regions, probably due to the bending effect observed in the lamellae which causes a concomitant loss in their directionality, thus hindering the interlamellar glide. The work has shed some light into the recently proposed routes to increase mechanical toughness of metallic glasses, such as the development of nanocomposites or phase separation into two amorphous counterparts. Nanoindentation can still be vastly used to study the deformation behaviour of metallic glasses. Although studies using nanoindentation in composite materials are still not widely carried out, the power of this technique is clearly shown in this work enabling a distinction to be made between the hardening of the constituent phases. Hence, the underlying mechanisms governing the property changes in a composite material during plastic deformation (i.e. compression tests or severe plastic deformation) can now be better understood. The use of complementary techniques, such as SEM or TEM, has shown to provide valuable information for the in-depth investigation of the microscopic mechanisms governing plastic flow in metallic glasses and their composites.The deformation mechanisms and the applications of metallic glasses and composite materials are still under investigation. The work presented in this thesis is likely to motivate new studies on the subject, from both fundamental and technological points of view. The obtained results can help in the interpretation of phenomena, like the indentation size-effect, relaxation processes, cyclic deformation and deformation during indentation in metallic glasses. Finally, more work has to be done in the optimization of ductilization procedures of metallic glasses and nanocrystalline alloys which may enhance their performance and widen their applicability as structural materials.References:[1] Masumoto T, Egami T: Mater Sci Eng 1981; 48:147.[2] Croat JJ, Herbst JF, Lee RW, Pinkerton FE: J Appl Phys1984; 55:2078.[3] Pampillo CA, Polk DE: Acta Metall 1974; 22:741.[4] Masumoto T, Maddin R: Mater Sci Eng 1975; 19:1.[5] Hufnagel TC: On Mechanical Behavior of Metallic Glasses, Scripta Mater 2006; viewpoint n潞37.[6] Spaepen F: Acta Metall 1977; 25:407.[7] Argon AS: Acta Metall 1979; 27:47.[8] Lewandowski JJ, Greer AL, Wang WH: Philos Mag Lett 2005; 85:77.[9] Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ: Phys Rev Lett 2005; 94:1255510.[10] Schroers J, Johnson WL: Phys Rev Lett 2004; 93:255506.[11] Hays CC, Kim CP, Johnson WL: Phys Rev Lett 2000; 84:2901.[12] Ott RT, Sansoz F, Molinari JF, Almer J, Ramesh KT, Hufnagel TC: Acta Mater 2005; 53:1883
Deformation behaviour and streghtening of bulk metallic glasses and nanocomposites
Consultable des del TDXT铆tol obtingut de la portada digitalitzadaA partir dels anys seixanta, els vidres met脿l路lics han estat objecte d'un gran n煤mero d'investigacions, des de llavors s'han realitzat avan莽os molt significatius en la comprensi贸 de la seva estructura i algunes de les seves propietats. Com el seu nom indica, els vidres met脿l路lics s贸n aliatges met脿l路lics que no presenten ordenament at貌mic a llarg abast. Aquesta falta d'ordre els confereix propietats i comportaments considerablement diferents respecte als aliatges cristal路lins. Per exemple, es comporten generalment com materials magn猫tics tous (baixa coercitivitat i elevada permeabilitat) i s'han comercialitzat com a bases de transformadors, cap莽als de lectura magn猫tics i protectors magn猫tics [1]. A partir de certs tractaments t猫rmics o d'altres t猫cniques, 茅s possible controlar la seva total o parcial cristal路litzaci贸. En alguns casos, precipiten nanocristalls repartits uniformement obtenint un material magn猫tic dur amb aplicaci贸 industrial [2]. A part de les seves propietats magn猫tiques, s'ha demostrat que algunes de les seves propietats mec脿niques difereixen significativament dels materials cristal路lins, ja que mostren un elevat l铆mit el脿stic, una elevada deformaci贸 en r猫gim el脿stic, deformaci贸 pl脿stica heterog猫nia i homog猫nia i tamb茅 l'aparici贸 de material fos en les superf铆cies de fractura [3,4]. La combinaci贸 d'un elevat l铆mit el脿stic juntament amb la possibilitat d'obtenir vidres met脿l路lics massissos ha obert un nou inter猫s en la utilitzaci贸 d'aquests com a materials estructurals [5]. No obstant aix貌, els vidres met脿l路lics mostren una clara localitzaci贸 de la deformaci贸 pl脿stica en bandes de cisalla al ser deformats a temperatura ambient [6,7]. A m茅s, en lloc d'experimentar enduriment per deformaci贸, els vidres met脿l路lics s'ablaneixen a causa de la formaci贸 de bandes de cisalla que a m茅s impedeixen l'elongaci贸 estable del material quan 茅s deformat en tensi贸. Aix铆 doncs, la millora de la ductilitat d'aquest tipus de materials s'ha convertit en l'objectiu de molts treballs d'investigaci贸. Recentment, s'ha estudiat l'enduriment intr铆nsec dels vidres met脿l路lics [8,9]. S'ha demostrat que existeix correlaci贸 entre l'energia de fractura i el quocient entre el m貌dul de cisalla (G) i el m貌dul de compressibilitat (B). En aquest estudi s'ha concl貌s que una bona forma d'augmentar la plasticitat dels vidres met脿l路lics 茅s escollir els elements que constituiran l'aliatge amb baix G/B o el que 茅s equivalent, elevat coeficient de Poisson. El considerable increment de ductilitat que acompanya l'aparici贸 de m煤ltiples bandes de cisalla, indica que la seva proliferaci贸, independentment de com tingui lloc, hauria de ser un poder贸s mecanisme d'enduriment i ductilitzaci贸 en metalls amorfs [10]. Aix貌 obre clarament una oportunitat per a dissenyar microestructures que endureixin els vidres met脿l路lics massissos a partir de diferents m猫todes. Per exemple, s'ha vist que la pres猫ncia d'una segona fase (amorfa o cristal路lina) amb propietats mec脿niques diferents de la matriu promou la nucleaci贸 de m煤ltiples bandes de cisalla, al mateix temps que impedeix la propagaci贸 de les mateixes. El resultat final 茅s l'augment de la plasticitat d'aquests materials en compressi贸 [11,12]. Aix铆 doncs, en aquesta tesi s'han estudiat els fonaments de la deformaci贸 de diverses fam铆lies de vidres met脿l路lics i materials nanocomposats a partir d'assajos de compressi贸 i nanoindentaci贸. Els mecanismes de deformaci贸 el脿stica, anel脿stica i pl脿stica dels vidres met脿l路lics influencien la resposta obtinguda en els experiments de nanoindentaci贸 de forma fonamental. Les observacions i la discussi贸 realitzades en el treball presentat ajuden a diferenciar els tres mecanismes de deformaci贸 en les gr脿fiques obtingues en els experi猫ncies de nanoindentaci贸 realitzades. S'han estudiat els mecanismes de deformaci贸 de diferents materials nanocomposats: - A partir de vidres met脿l路lics basats en Cu s'ha aconseguit la formaci贸 d'un aliatge de matriu amorfa amb una dispersi贸 homog猫nia de cristalls de grand脿ria nanom猫trica. Aix铆 doncs, la cristal路litzaci贸, l'estabilitat t猫rmica i les propietats mec脿niques dels vidres Cu60ZrxTi40-x (x = 15, 20, 22, 25, 30) han estat estudiades. A partir dels coneixements obtinguts s'ha procedit a la obtenci贸 d'un material nanocomposat provocant la cristal路litzaci贸 prim脿ria dels vidres met脿l路lics estudiats anteriorment. S'ha observat que la matriu amorfa domina les propietats mec脿niques del compost, per貌 que la precipitaci贸 d'una fase intermet脿l路lica endureix l'aliatge. - S'han obtingut cintes en el sistema Ni58.5Nb20.25Y21.25 (at%) formades per dues fases amorfes, degut a la immiscibilitat que presenta el sistema Nb-Y tant en estat s貌lid com en estat l铆quid. S'ha observat que la deformaci贸 pl脿stica d'aquest aliatge 茅s clarament diferent al d'un vidre met脿l路lic monol铆tic. Aix铆 doncs, la seva plasticitat i duresa nom茅s es poden explicar degut a la interacci贸 entre les bandes de cisalla formades en la matriu i la segona fase precipitada en forma globular. - S'ha dut a terme l'estudi de l'evoluci贸 microestructural i els mecanismes d'enduriment despr茅s de deformar pl脿sticament per torsi贸 un aliatge basat en Ti format per una matriu eut猫ctica nanom猫trica combinada amb dendrites de grand脿ria microm猫trica. Abans de la deformaci贸 pl脿stica, les dendrites s贸n m茅s dures que la matriu eut猫ctica ja que sofreixen un enduriment per soluci贸 s貌lida. Despr茅s de la deformaci贸, tant la matriu com les dendrites s'endureixen a diferent ritme fins arribar a la mateixa duresa en ambdues fases. Els mecanismes d'aquest enduriment s贸n diferents a cada fase degut a la seva diferent naturalesa. Les investigacions realitzades durant la tesi han perm猫s comprendre millor algunes de les rutes proposades per millorar les propietats mec脿niques dels vidres met脿l路lics, com ara el desenvolupament de nanocomposats o la separaci贸 en dues fases amorfes. La nanoindentaci贸 encara permet estudiar en molts casos la deformaci贸 dels vidres met脿l路lics. Encara que els estudis de la deformaci贸 d'aquests materials utilitzant nanoindentaci贸 no s贸n molt abundants, les avantatges d'aquesta t猫cnica s'han mostrat clarament en aquest treball, com per exemple en l'observaci贸 directe de l'enduriment de les diferents fases constituents d'un material nanocomposat. Per tant, els mecanismes subjacents que governen la deformaci贸 pl脿stica dels materials nanocomposats (per exemple per assajos de compressi贸 o deformaci贸 pl脿stica severa) s'han pogut comprendre millor. A m茅s a m茅s, la utilitzaci贸 de t猫cniques complement脿ries, com la microsc貌pia electr貌nica tant de rastreig com de transmissi贸, ha aportat informaci贸 molt valuosa per investigar els mecanismes microsc貌pics que governen al deformaci贸 pl脿stica en els vidres met脿l路lics i materials nanocomposats. Els mecanismes de deformaci贸 i les aplicacions dels vidres met脿l路lics i materials nanocomposats s贸n encara un camp actiu d'investigaci贸. El treball presentat en aquesta tesi motivar脿 nous estudis en aquest camp cient铆fic, des dels punts de vista te貌ric i tecnol貌gic. Aix铆 doncs, aquesta tesi ajudar脿 en la interpretaci贸 de fen貌mens com l'efecte de grand脿ria de la indentaci贸, processos de relaxaci贸, deformaci贸 c铆clica i deformaci贸 durant la indentaci贸 de vidres met脿l路lics. Finalment, cal dir que s'ha d'investigar molt m茅s en aquests temes per tal d'optimitzar les propietats mec脿niques dels vidres met脿l路lics i aix铆 poder ser utilitzats en aplicacions tecnol貌giques. Refer猫ncies: [1] Masumoto T, Egami T: Mater Sci Eng 1981; 48:147. [2] Croat JJ, Herbst JF, Lee RW, Pinkerton FE: J Appl Phys1984; 55:2078. [3] Pampillo CA, Polk DE: Acta Metall 1974; 22:741. [4] Masumoto T, Maddin R: Mater Sci Eng 1975; 19:1. [5] Hufnagel TC: On Mechanical Behavior of Metallic Glasses, Scripta Mater 2006; viewpoint n潞37. [6] Spaepen F: Acta Metall 1977; 25:407. [7] Argon AS: Acta Metall 1979; 27:47. [8] Lewandowski JJ, Greer AL, Wang WH: Philos Mag Lett 2005; 85:77. [9] Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ: Phys Rev Lett 2005; 94:1255510. [10] Schroers J, Johnson WL: Phys Rev Lett 2004; 93:255506. [11] Hays CC, Kim CP, Johnson WL: Phys Rev Lett 2000; 84:2901. [12] Ott RT, Sansoz F, Molinari JF, Almer J, Ramesh KT, Hufnagel TC: Acta Mater 2005; 53:1883.Metallic glasses have been the subject of widespread research over the past four decades with significant advancement in their understanding. As the name suggests, they are metallic alloys with no long-range order. The lack of long-range atomic order makes their properties and behaviour considerably different from those of crystalline alloys. For example, they typically behave as very soft magnetic materials (low coercitivity and high permeability) and have led to commercial applications such as transformer cores, magnetic read-heads and magnetic shielding [1]. By some specific treatments or techniques, it is possible to control the total or partial crystallization of metallic glasses. In some cases very fine, uniform microstructures have been exploited for their hard magnetism [2]. Furthermore, early work already pointed out that their mechanical behaviour showed unique properties, i.e. high strength, large elastic limit, homogeneous and inhomogeneous modes of deformation, and the novel 芦molten禄 appearance of fracture surfaces [3,4]. The combination of their high yield strength together with the possibility of casting metallic glasses in bulk form has triggered the interest in using them as structural materials [5]. However, metallic glasses show a distinctive localization of the plastic deformation into shear bands when loaded under ambient conditions [6,7]. Instead of work-hardening, metallic glasses soften due to the shear band formation which prevents stable plastic elongation in tension. Therefore, enhancement of the ductility of this type of materials has been the aim of much research work. Recent works have studied the instrinsic toughening of metallic glasses [8,9]. The competition between flow and fracture relates the resistance to plastic deformation, proportional to G, to the resistance to dilatation that occurs in the region of a crack tip, which is proportional to B. The results of these works on metallic glasses indicate that exceeding a critical value of G/B (i.e. in the range of 0.41-0.43) produces an amorphous/annealed glass that approaches the ideal brittle behaviour associated with oxide glasses. Therefore, the correlation between fracture energy and elastic moduli indicates that the intrinsic toughness in metallic glasses may be enhanced by selection of elements with low G/B (or, equivalently, high Poisson ratio, ?) as constituents. The tremendous toughness increase that accompanies multiple shear banding indicates that proliferation of shear bands, regardless of how it is accomplished, should provide a powerful toughening mechanism in amorphous metals [10]. This clearly provides the opportunity for microstructural design of extrinsically toughened BMGs via a variety of techniques. The presence of a secondary phase (amorphous or crystalline) has been shown to promote multiple shear band nucleation sites via mismatch in various mechanical properties, while also providing barriers to shear band propagation. The result of the promotion of shear bands and hindering their propagation finally results in macroscopic compressive ductility [11,12]. The fundamentals of deformation behaviour of several families of metallic glasses and composite materials have been investigated by means of compression tests and nanoindentation experiments. - The mechanisms of elastic, anelastic and plastic deformation of metallic glasses influence the response of the material during a nanoindentation test. The observed and discussed results on the deformation behaviour of a Pd-base BMG will help to differentiate the deformation mechanisms in the load-displacement curve obtained in an indentation test. The fundamentals of deformation behaviour in different composite materials have been studied: - Cu-based metallic glasses have been used to obtain a homogeneous dispersion of nanocrystalls in an amorphous matrix. Therefore, the crystallization behaviour, thermal stability and mechanical properties of Cu-Zr-Ti metallic glasses have been extensively studied. The influence of relaxation and the precipitation of secondary phases on the mechanical response of the studied alloys have been analysed. The precipitation of nanocrystals does not change the main deformation mechanism of these materials and therefore, shear bands form and propagate across the amorphous matrix. Fracture strength and Young's modulus increase with increasing crystalline volume fraction. - Ribbons of the composition Ni58.5Nb20.25Y21.25 (at%) have been obtained and show phase separation due to the immiscibility gap in the Nb-Y system. The mechanical behaviour of a two-phase metallic glass, consisting of a Y-rich softer matrix and a globular harder Nb-rich phase, is clearly different from a monolithic glass. The plasticity and the hardness of the two-phase alloy are enhanced with respect to the single softer amorphous alloy composing the matrix, due to deflection of the shear bands in the vicinity of the hard globular phase. - The microstructure evolution and the mechanisms of mechanical hardening after high pressure torsion in a Ti-based dendrite/eutectic nanostructured alloy have been investigated. The dendrites are found to be harder than the eutectic matrix. The structural refinement that occurs in all phases during the severe plastic deformation imposed by HPT strengthens the material. Interestingly, this hardening is more pronounced for the eutectic regions, probably due to the bending effect observed in the lamellae which causes a concomitant loss in their directionality, thus hindering the interlamellar glide. The work has shed some light into the recently proposed routes to increase mechanical toughness of metallic glasses, such as the development of nanocomposites or phase separation into two amorphous counterparts. Nanoindentation can still be vastly used to study the deformation behaviour of metallic glasses. Although studies using nanoindentation in composite materials are still not widely carried out, the power of this technique is clearly shown in this work enabling a distinction to be made between the hardening of the constituent phases. Hence, the underlying mechanisms governing the property changes in a composite material during plastic deformation (i.e. compression tests or severe plastic deformation) can now be better understood. The use of complementary techniques, such as SEM or TEM, has shown to provide valuable information for the in-depth investigation of the microscopic mechanisms governing plastic flow in metallic glasses and their composites. The deformation mechanisms and the applications of metallic glasses and composite materials are still under investigation. The work presented in this thesis is likely to motivate new studies on the subject, from both fundamental and technological points of view. The obtained results can help in the interpretation of phenomena, like the indentation size-effect, relaxation processes, cyclic deformation and deformation during indentation in metallic glasses. Finally, more work has to be done in the optimization of ductilization procedures of metallic glasses and nanocrystalline alloys which may enhance their performance and widen their applicability as structural materials. References: [1] Masumoto T, Egami T: Mater Sci Eng 1981; 48:147. [2] Croat JJ, Herbst JF, Lee RW, Pinkerton FE: J Appl Phys1984; 55:2078. [3] Pampillo CA, Polk DE: Acta Metall 1974; 22:741. [4] Masumoto T, Maddin R: Mater Sci Eng 1975; 19:1. [5] Hufnagel TC: On Mechanical Behavior of Metallic Glasses, Scripta Mater 2006; viewpoint n潞37. [6] Spaepen F: Acta Metall 1977; 25:407. [7] Argon AS: Acta Metall 1979; 27:47. [8] Lewandowski JJ, Greer AL, Wang WH: Philos Mag Lett 2005; 85:77. [9] Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ: Phys Rev Lett 2005; 94:1255510. [10] Schroers J, Johnson WL: Phys Rev Lett 2004; 93:255506. [11] Hays CC, Kim CP, Johnson WL: Phys Rev Lett 2000; 84:2901. [12] Ott RT, Sansoz F, Molinari JF, Almer J, Ramesh KT, Hufnagel TC: Acta Mater 2005; 53:1883
Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Time-dependent deformation processes during nanoindentation have been investigated on a Pd40Cu30Ni10P20 bulk metallic glass. Deformation under constant load has been studied as a function of prior loading rate and temperature. The constant-load displacement of the indenter into the sample shows classic relaxation kinetics and reveals the importance of anelasticity for the mechanical behavior of metallic glasses at the nanoscale