23 research outputs found

    Do atmospheric events explain the arrival of an invasive ladybird (Harmonia axyridis) in the UK?

    Get PDF
    Species introduced outside their natural range threaten global biodiversity and despite greater awareness of invasive species risks at ports and airports, control measures in place only concern anthropogenic routes of dispersal. Here, we use the Harlequin ladybird, Harmonia axyridis, an invasive species which first established in the UK from continental Europe in 2004, to test whether records from 2004 and 2005 were associated with atmospheric events. We used the atmospheric- chemistry transport model SILAM to model the movement of this species from known distributions in continental Europe and tested whether the predicted atmospheric events were associated with the frequency of ladybird records in the UK. We show that the distribution of this species in the early years of its arrival does not provide substantial evidence for a purely anthropogenic introduction and show instead that atmospheric events can better explain this arrival event. Our results suggest that air flows which may assist dispersal over the English Channel are relatively frequent; ranging from once a week from Belgium and the Netherlands to 1–2 times a week from France over our study period. Given the frequency of these events, we demonstrate that atmospheric-assisted dispersal is a viable route for flying species to cross natural barriers

    The effects of climate and land use on British bumblebees:Findings from a decade of citizen-science observations

    Get PDF
    Bumblebees are important pollinators but are suffering from population declines due to land use intensification and climate change. In-depth knowledge of species' relationships with different land use and climate variables is invaluable to guide conservation efforts, as well as enable predictions to be made about the impacts of future changes in these variables. Here we use 10 years of bumblebee abundance data from the UK, collected by citizen scientists as part of the BeeWalk scheme, to investigate associations between 14 bumblebee species and various land use, habitat and climate variables. National-scale land cover and climate data were complemented with observer-collected habitat data. Bumblebee presence and abundance showed strong relationships with environmental variables. However, interspecific variation was far stronger than commonalities, which suggests that targeted conservation work is required to effectively safeguard particular species. Within species, we found evidence of different habitat associations between reproductive and worker castes. The results also showed that wetland and riparian habitats had consistently positive associations with a number of species, while semi-natural, arable and urban areas had strongly species-specific associations. Synthesis and applications. This study reveals strong effects of specific habitats occurring within broad land cover types on the presence and abundance of bumblebees, with several distinct habitats having importance for different species and castes. Consequently, conservation efforts need to be carefully tailored to particular species. Nevertheless, reversing the loss of semi-natural areas such as wetlands may be the single most generally effective action for bumblebee conservation while improving habitats in urban and arable areas could benefit particular (rare) species. Our results also suggest that the combination of long-term, detailed monitoring data of both species and habitats, here collected by citizen scientists, with remotely sensed landcover and climate data is essential to extend knowledge of species' habitat requirements and to support future research and conservation.</p

    The effects of climate and land use on British bumblebees: Findings from a decade of citizen‐science observations

    Get PDF
    Bumblebees are important pollinators but are suffering from population declines due to land use intensification and climate change. In-depth knowledge of species' relationships with different land use and climate variables is invaluable to guide conservation efforts, as well as enable predictions to be made about the impacts of future changes in these variables. Here we use 10 years of bumblebee abundance data from the UK, collected by citizen scientists as part of the BeeWalk scheme, to investigate associations between 14 bumblebee species and various land use, habitat and climate variables. National-scale land cover and climate data were complemented with observer-collected habitat data. Bumblebee presence and abundance showed strong relationships with environmental variables. However, interspecific variation was far stronger than commonalities, which suggests that targeted conservation work is required to effectively safeguard particular species. Within species, we found evidence of different habitat associations between reproductive and worker castes. The results also showed that wetland and riparian habitats had consistently positive associations with a number of species, while semi-natural, arable and urban areas had strongly species-specific associations. Synthesis and applications. This study reveals strong effects of specific habitats occurring within broad land cover types on the presence and abundance of bumblebees, with several distinct habitats having importance for different species and castes. Consequently, conservation efforts need to be carefully tailored to particular species. Nevertheless, reversing the loss of semi-natural areas such as wetlands may be the single most generally effective action for bumblebee conservation while improving habitats in urban and arable areas could benefit particular (rare) species. Our results also suggest that the combination of long-term, detailed monitoring data of both species and habitats, here collected by citizen scientists, with remotely sensed landcover and climate data is essential to extend knowledge of species' habitat requirements and to support future research and conservation.</p

    Evaluating Promotional Approaches for Citizen Science Biological Recording: Bumblebees as a Group Versus Harmonia axyridis as a Flagship for Ladybirds

    Get PDF
    Over the past decade, the number of biological records submitted by members of the public have increased dramatically. However, this may result in reduced record quality, depending on how species are promoted in the media. Here we examined the two main promotional approaches for citizen science recording schemes: flagship-species, using one charismatic species as an umbrella for the entire group (here, Harmonia axyridis (Pallas) for Coleoptera: Coccinellidae), and general-group, where the group is promoted as a whole and no particular prominence is given to any one species (here, bumblebees, genus Bombus (Hymenoptera: Apidae)). Of the two approaches, the general-group approach produced data that was not biased towards any one species, but far fewer records per year overall. In contrast, the flagship-species approach generated a much larger annual dataset, but heavily biased towards the flagship itself. Therefore, we recommend that the approach for species promotion is fitted to the result desired

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people.&nbsp; Additional co-authors: Artur Gil, Audrey A. Grez, Thomas Guillemaud, Danny Haelewaters, Annette Herz, Alois Honek, Andy G. Howe, Cang Hui, William D. Hutchison, Marc Kenis, Robert L. Koch, Jan Kulfan, Lori Lawson Handley, Eric Lombaert, Antoon Loomans, John Losey, Alexander O. Lukashuk, Dirk Maes, Alexandra Magro, Gilles San Martin, Zdenka Martinkova, Ingrid A. Minnaar, Oldƙich Nedved, Marina J. Orlova-Bienkowskaja, Naoya Osawa, Wolfgang Rabitsch, Hans Peter Ravn, Gabriele Rondoni, Steph L. Rorke, Sergey K. Ryndevich, May-Guri Saethre, John J. Sloggett, Antonio Onofre Soares, Riaan Stals, Axel Vandereycken, Paul van Wielink, Sandra Vigl&aacute;&scaron;ov&aacute;, Peter Zach, Ilya A. Zakharov, Tania Zaviezo, Zihua Zha

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people

    Alien arthropod predators and parasitoids: interactions with the environment

    No full text
    Many species of entomophagous arthropods have been introduced either intentionally (through the practice of biological control) or unintentionally to new regions. We examine interactions of these aliens with their new environments in the context of rapid global change linked to human activity. We consider effects of such interactions on establishment and spread of the alien species and effects on indigenous biota and ecosystems. Major elements of global change that affect alien-environment interactions include landscape modifications by humans (e.g., cultivation, habitat loss and fragmentation) and increases in atmospheric CO2 and other gases resulting in climate change and other effects (e.g., changes in food quality for herbivores that affect higher trophic levels as well). Alien arthropod predators can alter landscapes for their benefit, to the detriment of indigenous species. A brief review also of blood-feeding alien arthropods makes clear that interactions with the environment critically influence invasions of zoophagous arthropods in general
    corecore