2 research outputs found

    Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(V) oxo and nitrido complexes

    Get PDF
    The synthesis and molecular structures of a U(V) neutral terminal oxo complex and a U(V) sodium uranium nitride contact ion pair are described. The synthesis of the former is achieved by the use of tBuNCO as a mild oxygen transfer reagent, whilst that of the latter is via the reduction of NaN3. Both mono-uranium complexes are stabilised by the presence of bulky silyl substituents on the ligand framework that facilitate a 2e- oxidation of a single U(III) centre. In contrast, when steric hindrance around the metal centre is reduced by the use of less bulky silyl groups, the products are di-uranium, U(IV) bridging oxo and (anionic) nitride complexes, resulting from 1e- oxidations of two U(III) centres. SQUID magnetometry supports the formal oxidation states of the reported complexes. Electrochemical studies show that the U(V) terminal oxo complex can be reduced and the [U(IV)O]- anion was accessed via reduction with K/Hg, and structurally characterised. Both the nitride complexes display complex electrochemical behaviour but each exhibits a quasi-reversible oxidation at ca. -1.6 V vs Fc+/0

    Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour

    Get PDF
    The mixed sandwich U(III) complex {U[η ^8 -C8H6(1,4-Si( iPr)3)2](Cp*)(THF)} reacts with the organic azides RN3 (R = SiMe3, 1-Ad, BMes2) to afford the corresponding, structurally characterised U(V) imido complexes {U[η ^8 -C8H6(1,4-Si( iPr)3)2](Cp*)(NR)}. In the case of R=SiMe3, the reducing power of the U(III) complex leads to reductive coupling as a parallel minor reaction pathway, forming R-R and the U(IV) azide-bridged complex{[U]}2(µ-N3)2, along with the expected [U]=NR complex. All three [U] =NR complexes show a quasi-reversible one electron reduction between -1.6 to -1.75 V, and for R= SiMe3, chemical reduction using K/Hg affords the anionic U(IV) complex K+ {U[η ^8 -C8H6(1,4-Si( iPr)3)2](Cp*)=NSiMe3} - . The molecular structure of the latter shows an extended structure in the solid state in which the K counter cations are successively sandwiched between the Cp* ligand of one [U] anion and the COTtips2 ligand of the next
    corecore