7 research outputs found

    Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    Get PDF
    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteri

    Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid)

    Get PDF
    Carboxypeptidase A1 has been the subject of extensive research in the last 30 y and is one of the most widely studied zinc metalloenzymes. However, the three-dimensional structure of the human form of the enzyme is not yet available. This report describes the three-dimensional structure of human carboxypeptidase A1 (hCPA1) derived from crystals that belong to the tetragonal space group P43212 and diffract to 1.6 Ã… resolution. A description of the ternary complex hCPA1-Zn2+-poly(acrylic acid) is included as a model of the interaction of mucoadhesive polymers with proteases in the gastrointestinal tract. The direct mode of interaction between poly(acrylic acid) and the active site of the target protease was confirmed by in vitro inhibition assays. The structure was further analyzed in silico through the optimal docking-area method. The characterization of binding sites on the surface of hCPA1 and a comparison with other available carboxypeptidase structures provided further insights into the formation of multiprotein complexes and the activation mechanisms of carboxypeptidase zymogens. The high-resolution structure of hCPA1 provides an excellent template for the modelling of physiologically relevant carboxypeptidases and could also contribute to the design of specific agents for biomedical purposes

    1.2 Ã… crystal structure of the serine carboxyl proteinase pro-kumamolisin

    Get PDF
    Kumamolisin, an extracellular proteinase derived from an acido/thermophilic Bacillus, belongs to the sedolisin family of endopeptidases characterized by a subtilisin-like fold and a Ser-Glu-Asp catalytic triad. In kumamolisin, the Asp82 carboxylate hydrogen bonds to Glu32-Trp129, which might act as a proton sink stabilizing the catalytic residues. The 1.2/1.3 Å crystal structures of the Glu32→Ala and Trp129→Ala mutants show that both mutations affect the active-site conformation, causing a 95% activity decrease. In addition, the 1.2 Å crystal structure of the Ser278→Ala mutant of pro-kumamolisin was determined. The prodomain exhibits a half-β sandwich core docking to the catalytic domain similarly as the equivalent subtilisin prodomains in their catalytic-domain complexes. This pro-kumamolisin structure displays, for the first time, the uncleaved linker segment running across the active site and connecting the prodomain with the properly folded catalytic domain. The structure strongly points to an initial intramolecular activation cleavage in subtilases, as presumed for pro-subtilisin and pro-furin

    Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    No full text
    Bacteria and archaea import molybdenum andtungsten from the environment in the form of theoxyanions molybdate (MoO42-) and tungstate (WO42-).These substrates are captured by an external, high-affinitybinding protein, and delivered to ATP binding cassettetransporters, which move them across the cell membrane.We have recently reported a crystal structure of themolybdate/tungstate binding protein ModA/WtpA fromArchaeoglobus fulgidus, which revealed an octahedrallycoordinated central metal atom. By contrast, the previouslydetermined structures of three bacterial homologs showedtetracoordinate molybdenum and tungsten atoms in theirbinding pockets. Until then, coordination numbers abovefour had only been found for molybdenum/tungsten inmetalloenzymes where these metal atoms are part of thecatalytic cofactors and coordinated by mostly non-oxygenligands. We now report a high-resolution structure ofA. fulgidus ModA/WtpA, as well as crystal structures offour additional homologs, all bound to tungstate. Thesecrystal structures match X-ray absorption spectroscopymeasurements from soluble, tungstate-bound protein, andreveal the details of the distorted octahedral coordination.Our results demonstrate that the distorted octahedralgeometry is not an exclusive feature of the A. fulgidusprotein, and suggest distinct binding modes of the bindingproteins from archaea and bacteria

    Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid)

    No full text
    Carboxypeptidase A1 has been the subject of extensive research in the last 30 y and is one of the most widely studied zinc metalloenzymes. However, the three-dimensional structure of the human form of the enzyme is not yet available. This report describes the three-dimensional structure of human carboxypeptidase A1 (hCPA1) derived from crystals that belong to the tetragonal space group P43212 and diffract to 1.6 Ã… resolution. A description of the ternary complex hCPA1-Zn2+-poly(acrylic acid) is included as a model of the interaction of mucoadhesive polymers with proteases in the gastrointestinal tract. The direct mode of interaction between poly(acrylic acid) and the active site of the target protease was confirmed by in vitro inhibition assays. The structure was further analyzed in silico through the optimal docking-area method. The characterization of binding sites on the surface of hCPA1 and a comparison with other available carboxypeptidase structures provided further insights into the formation of multiprotein complexes and the activation mechanisms of carboxypeptidase zymogens. The high-resolution structure of hCPA1 provides an excellent template for the modelling of physiologically relevant carboxypeptidases and could also contribute to the design of specific agents for biomedical purposes

    Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    Get PDF
    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2?) and tungstate (WO4 2?). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.BiotechnologyApplied Science
    corecore