319 research outputs found
The Quest for the Ideal Scintillator for Hybrid Phototubes
In this paper we present the results of extensive studies of scintillators
for hybrid phototubes with luminescent screens. The results of the developments
of such phototubes with a variety of scintillators are presented. New
scintillator materials for such kind of application are discussed. The
requirements for scintillators to use in such hybrid phototubes are formulated.
It is shown that very fast and highly efficient inorganic scintillators like
ZnO:Ga will be ideal scintillators for such kind of application.Comment: 5 pages, 6 figures and 1 table. Submitted to the proceedings of
SCINT2007 Conference, Winston-Salem, NC USA, June 4-8, 200
There is no variational characterization of the cycles in the method of periodic projections
The method of periodic projections consists in iterating projections onto
closed convex subsets of a Hilbert space according to a periodic sweeping
strategy. In the presence of sets, a long-standing question going
back to the 1960s is whether the limit cycles obtained by such a process can be
characterized as the minimizers of a certain functional. In this paper we
answer this question in the negative. Projection algorithms that minimize
smooth convex functions over a product of convex sets are also discussed
Asymptotic behavior of compositions of under-relaxed nonexpansive operators
In general there exists no relationship between the fixed point sets of the
composition and of the average of a family of nonexpansive operators in Hilbert
spaces. In this paper, we establish an asymptotic principle connecting the
cycles generated by under-relaxed compositions of nonexpansive operators to the
fixed points of the average of these operators. In the special case when the
operators are projectors onto closed convex sets, we prove a conjecture by De
Pierro which has so far been established only for projections onto affine
subspaces
Generalized Forward-Backward Splitting
This paper introduces the generalized forward-backward splitting algorithm
for minimizing convex functions of the form , where
has a Lipschitz-continuous gradient and the 's are simple in the sense
that their Moreau proximity operators are easy to compute. While the
forward-backward algorithm cannot deal with more than non-smooth
function, our method generalizes it to the case of arbitrary . Our method
makes an explicit use of the regularity of in the forward step, and the
proximity operators of the 's are applied in parallel in the backward
step. This allows the generalized forward backward to efficiently address an
important class of convex problems. We prove its convergence in infinite
dimension, and its robustness to errors on the computation of the proximity
operators and of the gradient of . Examples on inverse problems in imaging
demonstrate the advantage of the proposed methods in comparison to other
splitting algorithms.Comment: 24 pages, 4 figure
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
This paper develops a general framework for solving a variety of convex cone
problems that frequently arise in signal processing, machine learning,
statistics, and other fields. The approach works as follows: first, determine a
conic formulation of the problem; second, determine its dual; third, apply
smoothing; and fourth, solve using an optimal first-order method. A merit of
this approach is its flexibility: for example, all compressed sensing problems
can be solved via this approach. These include models with objective
functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or
a combination thereof. In addition, the paper also introduces a number of
technical contributions such as a novel continuation scheme, a novel approach
for controlling the step size, and some new results showing that the smooth and
unsmoothed problems are sometimes formally equivalent. Combined with our
framework, these lead to novel, stable and computationally efficient
algorithms. For instance, our general implementation is competitive with
state-of-the-art methods for solving intensively studied problems such as the
LASSO. Further, numerical experiments show that one can solve the Dantzig
selector problem, for which no efficient large-scale solvers exist, in a few
hundred iterations. Finally, the paper is accompanied with a software release.
This software is not a single, monolithic solver; rather, it is a suite of
programs and routines designed to serve as building blocks for constructing
complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This
version has updated reference
Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method
Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed
to provide respiratory phase resolved volumetric imaging in image guided
radiation therapy (IGRT). Inadequate number of projections in each phase bin
results in low quality 4D-CBCT images with obvious streaking artifacts. In this
work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction
algorithm and an enhancement algorithm, utilizing a temporal nonlocal means
(TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images.
Minimization of this term favors those 4D-CBCT images such that any anatomical
features at one spatial point at one phase can be found in a nearby spatial
point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a
total energy containing a data fidelity term and the TNLM energy term. As for
the image enhancement, 4D-CBCT images generated by the FDK algorithm are
enhanced by minimizing the TNLM function while keeping the enhanced images
close to the FDK results. A forward-backward splitting algorithm and a
Gauss-Jacobi iteration method are employed to solve the problems. The
algorithms are implemented on GPU to achieve a high computational efficiency.
The reconstruction algorithm and the enhancement algorithm generate visually
similar 4D-CBCT images, both better than the FDK results. Quantitative
evaluations indicate that, compared with the FDK results, our reconstruction
method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our
enhancement method increases the CNR by 2.75~3.33 times. The enhancement method
also removes over 80% of the streak artifacts from the FDK results. The total
computation time is ~460 sec for the reconstruction algorithm and ~610 sec for
the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table
From error bounds to the complexity of first-order descent methods for convex functions
This paper shows that error bounds can be used as effective tools for
deriving complexity results for first-order descent methods in convex
minimization. In a first stage, this objective led us to revisit the interplay
between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can
show the equivalence between the two concepts for convex functions having a
moderately flat profile near the set of minimizers (as those of functions with
H\"olderian growth). A counterexample shows that the equivalence is no longer
true for extremely flat functions. This fact reveals the relevance of an
approach based on KL inequality. In a second stage, we show how KL inequalities
can in turn be employed to compute new complexity bounds for a wealth of
descent methods for convex problems. Our approach is completely original and
makes use of a one-dimensional worst-case proximal sequence in the spirit of
the famous majorant method of Kantorovich. Our result applies to a very simple
abstract scheme that covers a wide class of descent methods. As a byproduct of
our study, we also provide new results for the globalization of KL inequalities
in the convex framework.
Our main results inaugurate a simple methodology: derive an error bound,
compute the desingularizing function whenever possible, identify essential
constants in the descent method and finally compute the complexity using the
one-dimensional worst case proximal sequence. Our method is illustrated through
projection methods for feasibility problems, and through the famous iterative
shrinkage thresholding algorithm (ISTA), for which we show that the complexity
bound is of the form where the constituents of the bound only depend
on error bound constants obtained for an arbitrary least squares objective with
regularization
- …