211 research outputs found

    Trends in Surgical and Beauty Masks for a Cleaner Environment

    Get PDF
    The surgical face mask (SFM) is a sheet medical device covering the mouth, nose and chin to protect the medical staff from the spread of respiratory droplets produced by the infective coughing or sneezing of hospitalized patients. On the other hand the beauty face mask (BFM) has been made by the same sheet but with a different aim—to protect the skin from pollution, acting as a hydrating and rejuvenation agent. Currently, both masks are made principally by non-biodegradable tissues, utilized to avoid the increasing great pollution invading our planet. Due to the diffusion of the current COVID-19 infection rate and the increasing consumption of skin care and beauty products, the waste of these masks, made principally by petrol-derived polymers, is creating further intolerable waste-invaded land and oceans. After an introduction to the aims, differences and market of the various masks, their productive means and ingredients are reported. These news are believed necessary to give the reader the working knowledge of these products, in the context of the bioeconomy, to better understand the innovative tissues proposed and realized by the biobased and biodegradable polymers. Thus, the possibility of producing biodegradable SFMs and BFMs, characterized for their effective antimicrobial and skin repairing activities or hydrating and antiaging activity, respectively. These innovative smart and biodegradable masks are requested from the majority of consumers oriented towards a future green environment. Giving this new sense of direction to their production and consumption, it will be possible to reduce the current waste, ranging worldwide at about 2 billion tons per year

    Recyclability of PET/WPI/PE multilayer films by removal of whey protein isolate-based coatings with enzymatic detergents

    Get PDF
    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed offfrom the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents

    Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents

    Get PDF
    The present work is focused on the optimization of a green process based on the employment of by-products obtained from wood treatments as raw materials for producing flexible polyurethane foams. More specifically, lignin was employed in flexible polyurethane foams in order to partially replace the usual fossil polyols; therefore glycerol (GLY) and glycerin polyglycidyl ether (EJ 300) were used as the polyol fraction for lignin liquefaction. Polypropylene glycol triol was used as a chain extender in different ratios with liquefaction solvents, and polymeric diphenylmethane diisocyanate as an isocyanate fraction. Liquefaction of lignin was performed by microwave irradiation, thus reducing the processing time and energy required compared to present industrial production processes. All the foams were produced in controlled expansion through the adoption of a one-shot' approach, using water as a blowing agent and with an isocyanate index (NCO/OH) of less than 100 to improve the flexibility of the foam. This approach allowed for the substitution of up to 12% of common petro derived polyol with commercial soda lignin. Finally, the foams were characterized, presenting properties that could be modulated as a function of lignin content, GLY/EJ 300 ratio and isocyanate index. The qualities of the foams were compatible with existing materials used for furniture and for the interiors of car seats and couches

    Pullulan for advanced sustainable body- and skin-contact applications

    Get PDF
    The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin

    Cellulose Acetate Blends – Effect of Plasticizers on Properties and Biodegradability

    Get PDF
    Cellulose acetate (CDA) cannot be processed as raw material because it starts to decompose before melting. Triacetin and diacetin were tested to improve CDA processing versus conventional phthalate as environmentally sustainable plasticizers, because of their low toxicity and fast biodegradability. The addition of triacetin and diacetin allowed melt processing of CDA and the results of tensile tests outlined their effect as plasticizers. The values of mechanical properties were compatible with the requirements for applications in rigid packaging. From the results of biodegradation tests it can be concluded that for pure cellulose acetate, complete biodegradation was obtained within 200 days of testing after reinoculation. Incomplete biodegradation was observed for test items with 20% triacetin or with 30% phthalate. After 46 days of incubation, the test samples with 30% plasticizer based on triacetin or triacetin-diacetin were completely biodegraded. These formulations can be selected for the production of compostable blends and/or biocomposites

    Biocomposites Based on Polyhydroxyalkanoates and Natural Fibres from Renewable Byproducts

    Get PDF
    Background and Objective: The use of biopolyesters and natural fibres or fillers for production of biobased composites has attracted interest of various application sectors ranging from packaging to automotive components and other high value applications in agreement with a bioeconomy approach. In the present paper biobased composites were produced by using compostable polymers degradable even in soil and marine water such as polyhydroxyalkanoates with natural fibres or fillers derived by food wastes (legumes by-products) and by wood industry.Material and Methods: Polyhydroxyalkanoates were processed with a biobased, biodegradable plasticizer such as acetyltributylcitrate and calcium carbonate as inorganic filler. The selected polymeric matrix was used for the production of composites with variable amounts of natural fibres. Green composites were manufactured by extrusion and injection moulding. Thermal, rheological, mechanical and morphological characterizations of the developed composites were performed.Results and Conclusion: The bio composites properties match the requirements for production of rigid food packaging or other single use items where the market is looking for more sustainable solutions versus the products actually used and hardly recyclable, opening a route for valorization of food residue. Pukanzsky’s model predicts with good accuracy the tensile behavior of the composites showing a medium intensity adhesion between fibres and polymer matrix in both cases analyzed.Conflict of interest: The authors declare no conflict of interest.

    Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review

    Get PDF
    bstract: Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint

    Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues

    Get PDF
    The paper tissue industry is a constantly evolving sector that supplies markets that require products with different specific properties. In order to meet the demand of functional properties, ensuring a green approach at the same time, research on bio-coatings has been very active in recent decades. The attention dedicated to research on functional properties has not been given to the study of the morphological and mechanical properties of the final products. This paper studied the effect of two representative bio-based coatings on paper tissue. Coatings based on chitin nanofibrils or polyphenols were sprayed on paper tissues to provide them, respectively, with antibacterial and antioxidant activity. The chemical structure of the obtained samples was preliminarily compared by ATR-FTIR before and after their application. Coatings were applied on paper tissues and, after drying, their homogeneity was investigated by ATR-FTIR on different surface areas. Antimicrobial and antioxidant properties were found for chitin nanofibrils- and polyphenols-treated paper tissues, respectively. The mechanical properties of treated and untreated paper tissues were studied, considering as a reference the same tissue paper sample treated only with water. Different mechanical tests were performed on tissues, including penetration, tensile, and tearing tests in two perpendicular directions, to consider the anisotropy of the produced tissues for industrial applications. The morphology of uncoated and coated paper tissues was analysed by field emission scanning electron microscopy. Results from mechanical properties evidenced a correlation between morphological and mechanical changes. The addition of polyphenols resulted in a reduction in mechanical resistance, while the addition of chitin enhanced this property. This study evidenced the different effects produced by two novel coatings on paper tissues for personal care in terms of properties and structure.This research was funded by the Bio-Based Industries Joint Undertaking under the European Union Horizon 2020 research program (BBI-H2020), ECOFUNCO project, grant number G.A 837863

    From Food Waste to Functional Biopolymers: Characterization of Chitin and Chitosan Produced from Prepupae of Black Soldier Fly Reared with Different Food Waste-Based Diets

    Get PDF
    The use of food waste as a rearing substrate to grow insects is an ecofriendly and sustainable alternative to food waste disposal. In the present research, Hermetia illucens prepupae were reared with a standard diet, different food waste-based diets based on vegetables, fruits, and meat, and a mixed one, where the previous three components were present equally. The demineralization and deproteination of the prepupae allowed for the obtainment of chitin that was then deacetylated to produce chitosan. Also, the bleaching of chitosan was attempted for further purification. The yield of the different reactions was investigated, and the infrared spectra of the obtained materials were analyzed to obtain information on the quantity and acetylation degree trend of the chitin and chitosan as a function of the diet. The possibility to slightly modulate the yield and acetylation degree of both biopolymers thanks to the specific diet was enlightened. Interestingly, the standard diet resulted in the highest fraction of chitin having the highest acetylation degree, and in the highest fraction of chitosan having the lowest acetylation degree
    • …
    corecore