3,122 research outputs found

    h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Full text link
    In this work we exploit agglomeration based hh-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature hh-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2L^2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.Comment: 78 pages, 7 figure

    Phase space description of the dynamics due to the coupled effect of the planetary oblateness and the solar radiation pressure perturbations

    Full text link
    The aim of this work is to provide an analytical model to characterize the equilibrium points and the phase space associated with the singly-averaged dynamics caused by the planetary oblateness coupled with the solar radiation pressure perturbations. A two-dimensional differential system is derived by considering the classical theory, supported by the existence of an integral of motion comprising semi-major axis, eccentricity and inclination. Under the single resonance hypothesis, the analytical expressions for the equilibrium points in the eccentricity-resonant angle space are provided, together with the corresponding linear stability. The Hamiltonian formulation is also given. The model is applied considering, as example, the Earth as major oblate body, and a simple tool to visualize the structure of the phase space is presented. Finally, some considerations on the possible use and development of the proposed model are drawn

    On totally geodesic submanifolds in the Jacobian locus

    Get PDF
    We study submanifolds of A_g that are totally geodesic for the locally symmetric metric and which are contained in the closure of the Jacobian locus but not in its boundary. In the first section we recall a formula for the second fundamental form of the period map due to Pirola, Tortora and the first author. We show that this result can be stated quite neatly using a line bundle over the product of the curve with itself. We give an upper bound for the dimension of a germ of a totally geodesic submanifold passing through [C] in M_g in terms of the gonality of C. This yields an upper bound for the dimension of a germ of a totally geodesic submanifold contained in the Jacobian locus, which only depends on the genus. We also study the submanifolds of A_g obtained from cyclic covers of the projective line. These have been studied by various authors. Moonen determined which of them are Shimura varieties using deep results in positive characteristic. Using our methods we show that many of the submanifolds which are not Shimura varieties are not even totally geodesic.Comment: To appear on International Journal of Mathematic

    Discontinuity induced bifurcations of non-hyperbolic cycles in nonsmooth systems

    Full text link
    We analyse three codimension-two bifurcations occurring in nonsmooth systems, when a non-hyperbolic cycle (fold, flip, and Neimark-Sacker cases, both in continuous- and discrete-time) interacts with one of the discontinuity boundaries characterising the system's dynamics. Rather than aiming at a complete unfolding of the three cases, which would require specific assumptions on both the class of nonsmooth system and the geometry of the involved boundary, we concentrate on the geometric features that are common to all scenarios. We show that, at a generic intersection between the smooth and discontinuity induced bifurcation curves, a third curve generically emanates tangentially to the former. This is the discontinuity induced bifurcation curve of the secondary invariant set (the other cycle, the double-period cycle, or the torus, respectively) involved in the smooth bifurcation. The result can be explained intuitively, but its validity is proven here rigorously under very general conditions. Three examples from different fields of science and engineering are also reported
    • ā€¦
    corecore