65 research outputs found
Finite size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model
We study finite size effects for the gap of the quasiparticle excitation
spectrum in the weakly interacting regime one-dimensional Hubbard model with
on-site attraction. Two type of corrections to the result of the thermodynamic
limit are obtained. Aside from a power law (conformal) correction due to
gapless excitations which behaves as , where is the number of
lattice sites, we obtain corrections related to the existence of gapped
excitations. First of all, there is an exponential correction which in the
weakly interacting regime () behaves as in the extreme limit of ,
where is the hopping amplitude, is the on-site energy, and
is the gap in the thermodynamic limit. Second, in a finite
size system a spin-flip producing unpaired fermions leads to the appearance of
solitons with non-zero momenta, which provides an extra (non-exponential)
contribution . For moderate but still large values of
, these corrections significantly increase and may
become comparable with the conformal correction. Moreover, in the case
of weak interactions where , the exponential correction
exceeds higher order power law corrections in a wide range of parameters,
namely for , and so does
even in a wider range of . For sufficiently small number of particles,
which can be of the order of thousands in the weakly interacting regime, the
gap is fully dominated by finite size effects.Comment: 17 pages, 5 figure
Two-component repulsive Fermi gases with population imbalance in elongated harmonic traps
We study the two-component repulsive Fermi gas with imbalanced populations in
one dimension. Starting from the Bethe Ansatz solution we calculate
analytically the phase diagram for the homogeneous system. We show that three
phases appear: the balanced phase, the fully polarised phase and the partially
polarised phase. By means of the local density approximation and the equation
of state for the homogeneous system we calculate the density profile for the
harmonically confined case. We show that a two-shell structure appears: at the
center of the cloud we find the partially polarised phase and at the edges the
fully polarised one. The radii of the inner and outer shells are calculated for
different values of the polarisation and the coupling strength. We calculate
the dependence of the magnetisation on the polarisation for different values of
the coupling strength and we show that the susceptibility is always finite.Comment: 6 pages, 3 figures. Published versio
breakpointR:an R/Bioconductor package to localize strand state changes in Strand-seq data
MOTIVATION: Strand-seq is a specialized single-cell DNA sequencing technique centered around the directionality of single-stranded DNA. Computational tools for Strand-seq analyses must capture the strand-specific information embedded in these data. RESULTS: Here we introduce breakpointR, an R/Bioconductor package specifically tailored to process and interpret single-cell strand-specific sequencing data obtained from Strand-seq. We developed breakpointR to detect local changes in strand directionality of aligned Strand-seq data, to enable fine-mapping of sister chromatid exchanges, germline inversion and to support global haplotype assembly. Given the broad spectrum of Strand-seq applications we expect breakpointR to be an important addition to currently available tools and extend the accessibility of this novel sequencing technique. AVAILABILITY: R/Bioconductor package https://bioconductor.org/packages/breakpointR
Cooling in strongly correlated optical lattices: prospects and challenges
Optical lattices have emerged as ideal simulators for Hubbard models of
strongly correlated materials, such as the high-temperature superconducting
cuprates. In optical lattice experiments, microscopic parameters such as the
interaction strength between particles are well known and easily tunable.
Unfortunately, this benefit of using optical lattices to study Hubbard models
come with one clear disadvantage: the energy scales in atomic systems are
typically nanoKelvin compared with Kelvin in solids, with a correspondingly
miniscule temperature scale required to observe exotic phases such as d-wave
superconductivity. The ultra-low temperatures necessary to reach the regime in
which optical lattice simulation can have an impact-the domain in which our
theoretical understanding fails-have been a barrier to progress in this field.
To move forward, a concerted effort to develop new techniques for cooling and,
by extension, techniques to measure even lower temperatures. This article will
be devoted to discussing the concepts of cooling and thermometry, fundamental
sources of heat in optical lattice experiments, and a review of proposed and
implemented thermometry and cooling techniques.Comment: in review with Reports on Progress in Physic
- …