35 research outputs found
Skin lesions with perimenstrual exacerbation: a diagnosis challenge
La dermatitis herpetiforme (DH) es una dermatosis ampollosa autoinmune subepidérmica de curso crónico,
considerada como la expresión cutánea de la intolerancia al gluten. Forma parte de un abanico de patologías
que tienen en común la sensibilidad a este componente, aunque solo un bajo porcentaje de pacientes
desarrollará un cuadro de enteropatía sensible al gluten con malabsorción clínica. Se manifiesta mediante
una erupción papulovesicular pruriginosa de predominio en superficies de extensión y nalgas. El estudio
inmunológico puede en algunos casos no ser específico, pero se considera patognomónico los depósitos
granulares de IgA en la unión dermoepidérmica. El tratamiento se basa en la dieta estricta libre de gluten
(DSG) y el uso adicional de dapsona para las manifestaciones cutáneas. Presentamos dos casos de pacientes
con brotes de dermatitis polimorfa e inespecífica de años de evolución y predominio perimenstrual, que
precisaron múltiples tratamientos y pruebas complementarias hasta la positividad y confirmación del
diagnóstico de DH.Dermatitis herpetiformis (DH) is an autoinmune subepidermal bullous dermatosis of chronic course,
considered the cutaneous expression of gluten intolerance. It´s part of a range of pathologies that have in
common the sensitivity to this component, but only a small percentage of patients develop gluten sensitive
enteropathy with clinical malabsorption. The clinic is manifested by a predominantly papulovesicular rash
pruritic, in extension surfaces and buttocks. Immuno-pathological study may not be specific in some cases, but
it´s considered pathognomonic the presence of IgA granular deposits in the dermoepidermal junction. Treatment
is based on strict gluten free diet (GFD) and the additional use of dapsone for cutaneous manifestations. We
present two patients with polymorphous and unspecific dermatitis for years and perimenstrual outbreaks,
which required multiple treatments and laboratory tests to confirm the diagnosis of DH
Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance
BACKGROUND: Improvement of Citrus, the most economically important fruit crop in the world, is extremely slow and inherently costly because of the long-term nature of tree breeding and an unusual combination of reproductive characteristics. Aside from disease resistance, major commercial traits in Citrus are improved fruit quality, higher yield and tolerance to environmental stresses, especially salinity. RESULTS: A normalized full length and 9 standard cDNA libraries were generated, representing particular treatments and tissues from selected varieties (Citrus clementina and C. sinensis) and rootstocks (C. reshni, and C. sinenis × Poncirus trifoliata) differing in fruit quality, resistance to abscission, and tolerance to salinity. The goal of this work was to provide a large expressed sequence tag (EST) collection enriched with transcripts related to these well appreciated agronomical traits. Towards this end, more than 54000 ESTs derived from these libraries were analyzed and annotated. Assembly of 52626 useful sequences generated 15664 putative transcription units distributed in 7120 contigs, and 8544 singletons. BLAST annotation produced significant hits for more than 80% of the hypothetical transcription units and suggested that 647 of these might be Citrus specific unigenes. The unigene set, composed of ~13000 putative different transcripts, including more than 5000 novel Citrus genes, was assigned with putative functions based on similarity, GO annotations and protein domains CONCLUSION: Comparative genomics with Arabidopsis revealed the presence of putative conserved orthologs and single copy genes in Citrus and also the occurrence of both gene duplication events and increased number of genes for specific pathways. In addition, phylogenetic analysis performed on the ammonium transporter family and glycosyl transferase family 20 suggested the existence of Citrus paralogs. Analysis of the Citrus gene space showed that the most important metabolic pathways known to affect fruit quality were represented in the unigene set. Overall, the similarity analyses indicated that the sequences of the genes belonging to these varieties and rootstocks were essentially identical, suggesting that the differential behaviour of these species cannot be attributed to major sequence divergences. This Citrus EST assembly contributes both crucial information to discover genes of agronomical interest and tools for genetic and genomic analyses, such as the development of new markers and microarrays
Hydraulic Traits Emerge as Relevant Determinants of Growth Patterns in Wild Olive Genotypes Under Water Stress
The hydraulic traits of plants, or the efficiency of water transport throughout the plant hydraulic system, could help to anticipate the impact of climate change and improve crop productivity. However, the mechanisms explaining the role of hydraulic traits on plant photosynthesis and thus, plant growth and yield, are just beginning to emerge. We conducted an experiment to identify differences in growth patterns at leaf, root and whole plant level among four wild olive genotypes and to determine whether hydraulic traits may help to explain such differences through their effect on photosynthesis. We estimated the relative growth rate (RGR), and its components, leaf gas exchange and hydraulic traits both at the leaf and whole-plant level in the olive genotypes over a full year. Photosynthetic capacity parameters were also measured. We observed different responses to water stress in the RGRs of the genotypes studied being best explained by changes in the net CO2 assimilation rate (NAR). Further, net photosynthesis, closely related to NAR, was mainly determined by hydraulic traits, both at leaf and whole-plant levels. This was mediated through the effects of hydraulic traits on stomatal conductance. We observed a decrease in leaf area: sapwood area and leaf area: root area ratios in water-stressed plants, which was more evident in the olive genotype Olea europaea subsp. guanchica (GUA8), whose RGR was less affected by water deficit than the other olive genotypes. In addition, at the leaf level, GUA8 water-stressed plants presented a better photosynthetic capacity due to a higher mesophyll conductance to CO2 and a higher foliar N. We conclude that hydraulic allometry adjustments of whole plant and leaf physiological response were well coordinated, buffering the water stress experienced by GUA8 plants. In turn, this explained their higher relative growth rates compared to the rest of the genotypes under water-stress conditions
Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement
To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Psi(leaf)) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Psi(leaf). While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. (C) 2014 Elsevier Ireland Ltd. All rights reserved
Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ
ABSTRACT . To gain insight into the function of hydrophilins, an in vitro assay was developed in which the enzymes malate dehydrogenase (MDH) or lactate dehydrogenase (LDH) are subjected to controlled partial water removal. Subtle changes in conformation during partial water removal were detected using 1-anilinonaphtalene-8-sulphonate (ANS), a fluorescent probe, whose emission at 460 nm increases when bound to hydrophobic groups. The results show that water limitation conditions imposed in this in vitro assay induce changes in MDH or LDH protein structures, which correlate with enzyme inactivation. It is also shown that plant, fungal and bacterial hydrophilins are able to protect enzymatic activities from water-loss effects in this in vitro system, in a wide range of water potentials. In addition, the data in this work indicate that the presence of hydrophilins also avoids the MDH and LDH conformational modifications caused during the assay. These results show that hydrophilins are able to protect enzymatic activities from inactivation due to in vitro partial water limitation and thus suggest a function for these proteins in vivo
Development and Evaluation of a PCR-Enzyme-Linked Immunosorbent Assay for Diagnosis of Human Brucellosis
In order to overcome some of the limitations of conventional microbiological techniques in the diagnosis of human brucellosis, a simple PCR-enzyme-linked immunosorbent assay (PCR-ELISA) was developed. After amplification of a 223-bp sequence of a gene that codes for the synthesis of an immunogenetic membrane protein specific for the Brucella genus (BCSP31), the digoxigenin-labeled amplified product was hybridized with a biotinylated capture probe which was complementary to the inner part of the amplicon. The hybrid was captured on streptavidin-coated microtiter plates and detected by using an antidigoxigenin Fab-peroxidase conjugate. The detection limit of the PCR-ELISA in a background of 3.5 μg of human genomic DNA was 10 fg (two bacterial cells). The PCR-ELISA showed an analytical sensitivity higher than that of ethidium bromide staining and equal to that obtained by conventional PCR followed by dot blot hybridization. In 59 peripheral blood samples from 57 consecutive patients with active brucellosis and 113 control samples, the PCR-ELISA was found to be 94.9% sensitive and 96.5% specific, whereas the sensitivity of the blood culture was only 70.1%. Since the assay can be performed in 1 day, is very reproducible, is easily standardized, and avoids the risk of infection in laboratory workers, this PCR-ELISA seems to be a practical and reliable tool for the diagnosis of human brucellosis
Shared and novel molecular responses of mandarin to drought
Drought is the most important stress experienced by citrus crops. A citrus cDNA microarray of about 6.000 genes has been utilized to identify transcriptomic responses of mandarin to water stress. As observed in other plant species challenged with drought stress, key genes for lysine catabolism, proline and raffinose synthesis, hydrogen peroxide reduction, vacuolar malate transport, RCI2 proteolipids and defence proteins such as osmotin, dehydrins and heat-shock proteins are induced in mandarin. Also, some aquaporin genes are repressed. The osmolyte raffinose could be detected in stressed roots while the dehydrin COR15 protein only accumulated in stressed leaves but not in roots. Novel drought responses in mandarin include the induction of genes encoding a new miraculin isoform, chloroplast beta-carotene hydroxylase, oleoyl desaturase, ribosomal protein RPS13A and protein kinase CTR1. These results suggest that drought tolerance in citrus may benefit from inhibition of proteolysis, activation of zeaxanthin and linolenoyl synthesis, reinforcement of ribosomal structure and down-regulation of the ethylene response