41 research outputs found

    Large extra dimensions, the galaxy power spectrum and the end of inflation

    Get PDF
    We consider the production of gravitational KK modes via cosmological photon-photon and electron-positron annihilation in models with large factorisable extra dimensions. We place constraints on this production using recent results from a joint analysis of the power spectra of the 2dF Galaxy Redshift Survey (2dFGS) and the cosmic microwave background (CMB) anisotropies. We obtain a more accurate upper limit for the temperature corresponding to matter-radiation equality and show that, even for the case of 6 extra dimensions and a fundamental scale of 1 TeV, a period of inflation is required that ends at a temperature much lower than that of the QCD phase transition.Comment: 12 pages, 2 figures, hadronic branching+typos corrected,accepted in JHE

    The 6dF galaxy survey: fundamental plane data

    Get PDF
    We report the 6dFGS Fundamental Plane (6dFGSv) catalogue that is used to estimate distances and peculiar velocities for nearly 9000 early-type galaxies in the local (z < 0.055) universe. Velocity dispersions are derived by cross-correlation from 6dF V-band spectra with typical S/N of 12.9 Å−1 for a sample of 11 315 galaxies; the median velocity dispersion is 163 km s−1 and the median measurement error is 12.9 per cent. The photometric Fundamental Plane (FP) parameters (effective radii and surface brightnesses) are determined from the JHK 2MASS images for 11 102 galaxies. Comparison of the independent J- and K-band measurements implies that the average uncertainty in XFP, the combined photometric parameter that enters the FP, is 0.013 dex (3 per cent) for each band. Visual classification of morphologies was used to select a sample of nearly 9000 early-type galaxies that form 6dFGSv. This catalogue has been used to study the effects of stellar populations on galaxy scaling relations, to investigate the variation of the FP with environment and galaxy morphology, to explore trends in stellar populations through, along and across the FP, and to map and analyse the local peculiar velocity field

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Get PDF
    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 &lt; z &lt; 0.092, a large mass range (7.6 &lt; logM*/M⊙ &lt; 11.6), and star formation rates of ~10-4 to ~101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around Ha. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central

    A data structure for improved GP analysis via efficient computation and visualisation of population measures

    No full text
    Population measures for genetic programs are defined and analysed in an attempt to better understand the behaviour of genetic programming. Some measures are simple, but do not provide sufficient insight. The more meaningful ones are complex and take extra computation time. Here we present a unified view on the computation of population measures through an information hypertree (iTree). The iTree allows for a unified and efficient calculation of population measures via a basic tree traversal.
    corecore