6,914 research outputs found
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
Positioning systems in Minkowski space-time: Bifurcation problem and observational data
In the framework of relativistic positioning systems in Minkowski space-time,
the determination of the inertial coordinates of a user involves the {\em
bifurcation problem} (which is the indeterminate location of a pair of
different events receiving the same emission coordinates). To solve it, in
addition to the user emission coordinates and the emitter positions in inertial
coordinates, it may happen that the user needs to know {\em independently} the
orientation of its emission coordinates. Assuming that the user may observe the
relative positions of the four emitters on its celestial sphere, an
observational rule to determine this orientation is presented. The bifurcation
problem is thus solved by applying this observational rule, and consequently,
{\em all} of the parameters in the general expression of the coordinate
transformation from emission coordinates to inertial ones may be computed from
the data received by the user of the relativistic positioning system.Comment: 10 pages, 7 figures. The version published in PRD contains a misprint
in the caption of Figure 3, which is here amende
Positioning systems in Minkowski space-time: from emission to inertial coordinates
The coordinate transformation between emission coordinates and inertial
coordinates in Minkowski space-time is obtained for arbitrary configurations of
the emitters. It appears that a positioning system always generates two
different coordinate domains, namely, the front and the back emission
coordinate domains. For both domains, the corresponding covariant expression of
the transformation is explicitly given in terms of the emitter world-lines.
This task requires the notion of orientation of an emitter configuration. The
orientation is shown to be computable from the emission coordinates for the
users of a `central' region of the front emission coordinate domain. Other
space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur
- …